DNA nanostructure-directed assembly of metal nanoparticle superlattices

被引:50
|
作者
Julin, Sofia [1 ]
Nummelin, Sami [1 ]
Kostiainen, Mauri A. [1 ,2 ]
Linko, Veikko [1 ]
机构
[1] Aalto Univ, Dept Bioprod & Biosyst, Biohybrid Mat, Espoo, Finland
[2] Aalto Univ, HYBER Ctr Excellence, Dept Appl Phys, Espoo, Finland
基金
芬兰科学院;
关键词
Nucleic acids; DNA origami; Self-assembly; Metal nanoparticles; Plasmonics; DNA nanotechnology; GOLD NANOPARTICLES; PLASMONIC NANOSTRUCTURES; NANOCOMPONENT ARRAYS; ORIGAMI; ORGANIZATION; NANOSCALE; NANOTECHNOLOGY; ARCHITECTURES; NANOTUBES; DELIVERY;
D O I
10.1007/s11051-018-4225-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structural DNA nanotechnology provides unique, well-controlled, versatile, and highly address-able motifs and templates for assembling materials at the nanoscale. These methods to build from the bottom-up using DNA as a construction material are based on programmable and fully predictable Watson-Crick base pairing. Researchers have adopted these techniques to an increasing extent for creating numerous DNA nanostructures for a variety of uses ranging from nanoelectronics to drug-delivery applications. Recently, an increasing effort has been put into attaching nanoparticles (the size range of 1-20 nm) to the accurate DNA motifs and into creating metallic nanostructures (typically 20-100 nm) using designer DNA nanoshapes as molds or stencils. By combining nanoparticles with the superior addressability of DNA-based scaffolds, it is possible to form well-ordered materials with intriguing and completely new optical, plasmonic, electronic, and magnetic properties. This focused review discusses the DNA structure-directed nanoparticle assemblies covering the wide range of different one-, two-, and three-dimensional systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Triplex-directed covalent cross-linking of a DNA nanostructure
    Rusling, David A.
    Nandhakumar, Iris S.
    Brown, Tom
    Fox, Keith R.
    CHEMICAL COMMUNICATIONS, 2012, 48 (77) : 9592 - 9594
  • [32] Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices
    De Fazio, Angela F.
    El-Sagheer, Afaf H.
    Kahn, Jason S.
    Nandhakumar, Iris
    Burton, Matthew Richard
    Brown, Tom
    Muskens, Otto L.
    Gang, Oleg
    Kanaras, Antonios G.
    ACS NANO, 2019, 13 (05) : 5771 - 5777
  • [33] Design Rules for Template-Confined DNA-Mediated Nanoparticle Assembly
    Zhou, Wenjie
    Lin, Qing-Yuan
    Mason, Jarad A.
    Dravid, Vinayak P.
    Mirkin, Chad A.
    SMALL, 2018, 14 (44)
  • [34] GENESUS: A two-step sequence design program for DNA nanostructure self-assembly
    Tsutsumi, Takanobu
    Asakawa, Takeshi
    Kanegami, Akemi
    Okada, Takao
    Tahira, Tomoko
    Hayashi, Kenshi
    BIOTECHNIQUES, 2014, 56 (04) : 180 - 185
  • [35] Metal nanoparticle-DNA hybrids - from assembly towards functional conjugates
    Fischler, Monika
    Simon, Ulrich
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (11) : 1518 - 1523
  • [36] Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA
    Auyeung, Evelyn
    Morris, William
    Mondloch, Joseph E.
    Hupp, Joseph T.
    Farha, Omar K.
    Mirkin, Chad A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) : 1658 - 1662
  • [37] SELECTIVE ASSEMBLY OF DNA NANOSTRUCTURE BRIDGING ONTO A TRENCHED SILICON SUBSTRATE
    Mori, Y.
    Ma, Z.
    Park, S.
    Hirai, Y.
    Tsuchiya, T.
    Tabata, O.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1389 - 1392
  • [38] DNA-programmable particle superlattices: Assembly, phases, and dynamic control
    Gang, Oleg
    Tkachenko, Alexei V.
    MRS BULLETIN, 2016, 41 (05) : 381 - 387
  • [39] Modulating the Bond Strength of DNA-Nanoparticle Superlattices
    Seo, Soyoung E.
    Wang, Mary X.
    Shade, Chad M.
    Rouge, Jessica L.
    Brown, Keith A.
    Mirkin, Chad A.
    ACS NANO, 2016, 10 (02) : 1771 - 1779
  • [40] Metal nanoparticle-directed NiCo2O4 nanostructure growth on carbon nanofibers with high capacitance
    Chen, Long
    Zhu, Jiahua
    CHEMICAL COMMUNICATIONS, 2014, 50 (60) : 8253 - 8256