Friction forces position the neural anlage

被引:66
作者
Smutny, Michael [1 ]
Akos, Zsuzsa [2 ]
Grigolon, Silvia [3 ]
Shamipour, Shayan [1 ]
Ruprecht, Verena [4 ,5 ]
Capek, Daniel [1 ]
Behrndt, Martin [1 ]
Papusheva, Ekaterina [1 ]
Tada, Masazumi [6 ]
Hof, Bjoern [1 ]
Vicsek, Tamas [2 ]
Salbreux, Guillaume [3 ]
Heisenberg, Carl-Philipp [1 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Eotvos Lorand Univ, Dept Biol Phys, Pazmany Peter Setany 1A, H-1117 Budapest, Hungary
[3] Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England
[4] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Spain
[5] Univ Pompeu Fabra, Barcelona 08003, Spain
[6] UCL, Dept Cell & Dev Biol, London WC1E 6BT, England
基金
英国医学研究理事会; 欧洲研究理事会; 英国惠康基金;
关键词
PRIMITIVE STREAK FORMATION; ZEBRAFISH GASTRULATION; CELL MOVEMENTS; TISSUE MORPHOGENESIS; COLLECTIVE MOTION; CYCLOPS MUTATION; NERVOUS-SYSTEM; E-CADHERIN; MIGRATION; PLATE;
D O I
10.1038/ncb3492
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.
引用
收藏
页码:306 / +
页数:38
相关论文
共 46 条
[1]  
Appel B, 2000, DEV DYNAM, V219, P155, DOI 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1052>3.3.CO
[2]  
2-B
[3]  
Araya C, 2016, DEV DYNAM, V245, P580, DOI [10.1002/DVDY.24401, 10.1002/dvdy.24401]
[4]   Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo [J].
Araya, Claudio ;
Tawk, Marcel ;
Girdler, Gemma C. ;
Costa, Marta ;
Carmona-Fontaine, Carlos ;
Clarke, Jonathan D. W. .
NEURAL DEVELOPMENT, 2014, 9
[5]   E-cadherin regulates cell movements and tissue formation in early zebrafish embryos [J].
Babb, SG ;
Marrs, JA .
DEVELOPMENTAL DYNAMICS, 2004, 230 (02) :263-277
[6]   Forces Driving Epithelial Spreading in Zebrafish Gastrulation [J].
Behrndt, Martin ;
Salbreux, Guillaume ;
Campinho, Pedro ;
Hauschild, Robert ;
Oswald, Felix ;
Roensch, Julia ;
Grill, Stephan W. ;
Heisenberg, Carl-Philipp .
SCIENCE, 2012, 338 (6104) :257-260
[7]  
Blanchard GB, 2009, NAT METHODS, V6, P458, DOI [10.1038/NMETH.1327, 10.1038/nmeth.1327]
[8]   The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ [J].
Compagnon, Julien ;
Barone, Vanessa ;
Rajshekar, Srivarsha ;
Kottmeier, Rita ;
Pranjic-Ferscha, Kornelija ;
Behrndt, Martin ;
Heisenberg, Carl-Philipp .
DEVELOPMENTAL CELL, 2014, 31 (06) :774-783
[9]   Analysis of tissue flow patterns during primitive streak formation in the chick embryo [J].
Cui, C ;
Yang, XS ;
Chuai, ML ;
Glazier, JA ;
Weijer, CJ .
DEVELOPMENTAL BIOLOGY, 2005, 284 (01) :37-47
[10]   Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos [J].
D'Amico, LA ;
Cooper, MS .
DEVELOPMENTAL DYNAMICS, 2001, 222 (04) :611-624