A DIOPHANTINE EQUATION IN k-FIBONACCI NUMBERS AND REPDIGITS

被引:14
作者
Bravo, Jhon J. [1 ]
Gomez, Carlos A. [2 ]
Luca, Florian [3 ,4 ,5 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
[2] Univ Valle, Dept Matemat, Calle 13 100-00, Cali, Colombia
[3] Univ Witwatersrand, Sch Math, POB Wits, ZA-2050 Johannesburg, South Africa
[4] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[5] Univ Ostrava, Fac Sci, Dept Math, 30 Dubna 22, Ostrava 70103 1, Czech Republic
关键词
generalized Fibonacci numbers; lower bounds for nonzero linear forms in logarithms of algebraic numbers; repdigits;
D O I
10.4064/cm7149-6-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-generalized Fibonacci sequence {F-n((k))}(n) starts with the k values 0,... , 0,1 and each term afterwards is the sum of the k preceding terms. We study which members of this sequence are sums of two repdigts, extending a result of Diaz and Luca (2011) regarding Fibonacci numbers with this property.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 17 条
[1]  
Alvarado S.D., 2011, P 14 INT C FIBONACCI, V20, P97
[2]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[3]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[4]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[5]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[6]  
Dresden GPB, 2014, J INTEGER SEQ, V17
[7]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[8]  
GÓMEZ CARLOS ALEXIS, 2014, Rev.colomb.mat., V48, P219, DOI 10.15446/recolma.v48n2.54128
[9]  
Sanchez SG, 2014, ANN MATH QUE, V38, P169, DOI 10.1007/s40316-014-0025-z
[10]  
Howard FT, 2011, FIBONACCI QUART, V49, P231