Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise

被引:64
|
作者
Asten, M. W. [1 ]
Hayashi, K. [2 ]
机构
[1] Monash Univ, Sch Earth Atmosphere & Environm, Melbourne, Vic 3800, Australia
[2] OYO Corp Geometr, San Jose, CA 95131 USA
关键词
Passive seismic; Active seismic; Microtremor; Ambient noise; Surface wave; Rayleigh wave; Love wave; V(s)30; Seismic array; HVSR; SPAC; MMSPAC; MASW; Model equivalence; SANTA-CLARA VALLEY; SURFACE-WAVE; DISPERSION CURVE; SPAC METHOD; MICROTREMOR; INVERSION; RELIABILITY; NUMBER; ESAC;
D O I
10.1007/s10712-018-9474-2
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m (V(s)30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.
引用
收藏
页码:633 / 659
页数:27
相关论文
共 50 条
  • [31] Mapping Crustal Shear Wave Velocity Structure and Radial Anisotropy Beneath West Antarctica Using Seismic Ambient Noise
    O'Donnell, J. P.
    Brisbourne, A. M.
    Stuart, G. W.
    Dunham, C. K.
    Yang, Y.
    Nield, G. A.
    Whitehouse, P. L.
    Nyblade, A. A.
    Wiens, D. A.
    Anandakrishnan, S.
    Aster, R. C.
    Huerta, A. D.
    Lloyd, A. J.
    Wilson, T.
    Winberry, J. P.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2019, 20 (11) : 5014 - 5037
  • [32] 3-D Crustal Shear-Wave Velocity Structure of the Taiwan Strait and Fujian, SE China, Revealed by Ambient Noise Tomography
    Zhang, Yayun
    Yao, Huajian
    Yang, Hsin-Ying
    Cai, Hui-Teng
    Fang, Hongjian
    Xu, Jiajun
    Jin, Xing
    Kuo-Chen, Hao
    Liang, Wen-Tzong
    Chen, Kai-Xun
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (09) : 8016 - 8031
  • [33] Inversion method for velocity structure of soil layers by ambient noise and its application
    Rong MianShui
    Wang JiXin
    Li XiaoJun
    Liu AoYi
    Kong XiaoShan
    Li Hang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (02): : 530 - 545
  • [34] Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions
    Asano, Kimiyuki
    Iwata, Tomotaka
    Sekiguchi, Haruko
    Somei, Kazuhiro
    Miyakoshi, Ken
    Aoi, Shin
    Kunugi, Takashi
    EARTH PLANETS AND SPACE, 2017, 69
  • [35] Three-dimensional shear wave velocity imaging by ambient seismic noise tomography
    Pilz, Marco
    Parolai, Stefano
    Picozzi, Matteo
    Bindi, Dino
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 189 (01) : 501 - 512
  • [36] Passive Elastography: Shear-Wave Tomography From Physiological-Noise Correlation in Soft Tissues
    Gallot, Thomas
    Catheline, Stefan
    Roux, Philippe
    Brum, Javier
    Benech, Nicolas
    Negreira, Carlos
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (06) : 1122 - 1126
  • [37] Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions
    Kimiyuki Asano
    Tomotaka Iwata
    Haruko Sekiguchi
    Kazuhiro Somei
    Ken Miyakoshi
    Shin Aoi
    Takashi Kunugi
    Earth, Planets and Space, 69
  • [38] Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography
    Li, Peng
    Thurber, Clifford
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 213 (03) : 1599 - 1607
  • [39] Shear-wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L'Aquila
    Di Giulio, Giuseppe
    Gaudiosi, Iolanda
    Cara, Fabrizio
    Milana, Giuliano
    Tallini, Marco
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 198 (02) : 848 - 866
  • [40] Three-dimensional shear wave velocity structure in the eastern margin of the Tibetan Plateau based on the ambient noise
    Tan YouHeng
    Yu XiangWei
    Song Qian
    Zhang WenBo
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (03): : 1050 - 1069