Analysis on characteristic of Laguerre-Gaussian beams with topological charges of arithmetic progression

被引:6
作者
Ke, Xizheng [1 ]
Zhao, Jie [1 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
来源
OPTIK | 2019年 / 183卷
基金
中国国家自然科学基金;
关键词
Composite vortex beam; Superposition; Phase singularity; Detection; ORBITAL ANGULAR-MOMENTUM; VORTEX BEAMS; GENERATION; TRANSFORMATION; PROPAGATION; VORTICES; LIGHT;
D O I
10.1016/j.ijleo.2019.02.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With the development of vortex beams with spiral phase front, the composite vortex beams, which can provide a variety of information and phase structure, have attracted considerable attention in the fields of free-space optical (FSO) communication and particle manipulation. In this research, the theoretical formula for the superposition of vortex beams with topological charges of arithmetic progression (the tolerance is Delta) is presented. The distribution characteristics of phase singularities of composite vortex beams generated by coaxial superposition are analyzed, and the number and position of angular solutions are solved. By changing the topological charges of vortex beams, it can be found that the intensity distribution of the composite vortex beam changes regularly. The number of outside bright spots is equal to Delta, and the number of dark spots is equal to Delta x (n-1). According to the rule of the number and location characteristics of bright and dark spots, it can also be used to detect the topological charge number of the composite vortex beam. When the composite vortex beam is used for information transmission, multiple channels of information can be transmitted simultaneously to increase channel capacity. This study provides a favorable basis for the superposition of vortex beams and a new method for the detection of vortex beams.
引用
收藏
页码:302 / 310
页数:9
相关论文
共 30 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Coherent Multimode OAM Superpositions for Multidimensional Modulation [J].
Anguita, Jaime A. ;
Herreros, Joaquin ;
Djordjevic, Ivan B. .
IEEE PHOTONICS JOURNAL, 2014, 6 (02)
[3]   Spatial transformation of Laguerre-Gaussian laser modes [J].
Arlt, J ;
Kuhn, R ;
Dholakia, K .
JOURNAL OF MODERN OPTICS, 2001, 48 (05) :783-787
[4]   Composite coherence vortices and their propagation in free space [J].
Cheng, Ke ;
Lue, Baida .
OPTIK, 2010, 121 (07) :589-594
[5]   OPTICAL VORTICES [J].
COULLET, P ;
GIL, L ;
ROCCA, F .
OPTICS COMMUNICATIONS, 1989, 73 (05) :403-408
[6]   Composite optical vortices formed by collinear Laguerre-Gauss beams [J].
Galvez, E. J. ;
Smiley, N. ;
Fernandes, N. .
NANOMANIPULATION WITH LIGHT II, 2006, 6131
[7]  
Galvez E. J., 2008, P SOC PHOTO-OPT INS, V6905
[8]   Free-space information transfer using light beams carrying orbital angular momentum [J].
Gibson, G ;
Courtial, J ;
Padgett, MJ ;
Vasnetsov, M ;
Pas'ko, V ;
Barnett, SM ;
Franke-Arnold, S .
OPTICS EXPRESS, 2004, 12 (22) :5448-5456
[9]   A revolution in optical manipulation [J].
Grier, DG .
NATURE, 2003, 424 (6950) :810-816
[10]  
Hao Z., 2016, ACTA PHYS SINICA, V65, P103