Non-ordinary state-based peridynamic simulation of elastoplastic deformation and dynamic cracking of polycrystal

被引:48
作者
Gu, Xin [1 ]
Zhang, Qing [1 ]
Madenci, Erdogan [2 ]
机构
[1] Hohai Univ, Dept Engn Mech, Nanjing, Jiangsu, Peoples R China
[2] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Non-ordinary state-based peridynamics; Crystal plasticity; Implicit solver; Dynamic fracture; FRACTURE; MODEL; PROPAGATION; OPERATOR;
D O I
10.1016/j.engfracmech.2019.106568
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The peridynamic correspondence material models provide a way to convert the classical continuum constitutive models into the framework of non-ordinary state-based peridynamics (NOSB PD) with inherent capabilities for describing long-range interactions and fracture. The present study introduces the modeling approach for crystal plasticity in the framework of NOSB PD with a penalty force stabilization technique. It also provides details for numerical implementation of explicit dynamic solver and implicit quasi-static nonlinear solver for many constitutive models. The quasi-static elastoplastic deformation and dynamic cracking examples illustrate that NOSB PD crystal plasticity can capture the fine shear bands that occur naturally in deforming polycrystalline aggregates and the elastoplastic dynamic cracking of polycrystals.
引用
收藏
页数:19
相关论文
共 50 条
[1]   Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals [J].
Abdollahi, Amir ;
Arias, Irene .
INTERNATIONAL JOURNAL OF FRACTURE, 2012, 174 (01) :3-15
[2]   A computational procedure for rate-independent crystal plasticity [J].
Anand, L ;
Kothari, M .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1996, 44 (04) :525-558
[3]   THE PROCESS OF SHEAR-BAND FORMATION IN PLANE-STRAIN COMPRESSION OF FCC METALS - EFFECTS OF CRYSTALLOGRAPHIC TEXTURE [J].
ANAND, L ;
KALIDINDI, SR .
MECHANICS OF MATERIALS, 1994, 17 (2-3) :223-243
[4]   Peridynamics for multiscale materials modeling [J].
Askari, E. ;
Bobaru, F. ;
Lehoucq, R. B. ;
Parks, M. L. ;
Silling, S. A. ;
Weckner, O. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[5]  
Bobaru F, 2016, HDB PERIDYNAMIC MODE
[6]   Non-ordinary state-based peridynamic analysis of stationary crack problems [J].
Breitenfeld, M. S. ;
Geubelle, P. H. ;
Weckner, O. ;
Silling, S. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 272 :233-250
[7]   Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling [J].
Cheng, Zhanqi ;
Liu, Yingkai ;
Zhao, Jun ;
Feng, Hu ;
Wu, Yizhang .
ENGINEERING FRACTURE MECHANICS, 2018, 191 :13-32
[8]   A peridynamic model for dynamic fracture in functionally graded materials [J].
Cheng, Zhanqi ;
Zhang, Guanfeng ;
Wang, Yenan ;
Bobaru, Florin .
COMPOSITE STRUCTURES, 2015, 133 :529-546
[9]   Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation [J].
Clayton, JD .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (02) :261-301
[10]   Peridynamic Modeling of Granular Fracture in Polycrystalline Materials [J].
De Meo, Dennj ;
Zhu, Ning ;
Oterkus, Erkan .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2016, 138 (04)