Immobilization of molecular catalysts for artificial photosynthesis

被引:13
作者
Whang, Dong Ryeol [1 ]
机构
[1] Hannam Univ, Dept Adv Mat, Daejeon 34054, South Korea
关键词
Artificial photosynthesis; Molecular catalysts; Immobilization; Solar fuel; METAL-ORGANIC FRAMEWORK; GLASSY-CARBON ELECTRODES; PHOTOCATALYTIC HYDROGEN-PRODUCTION; WATER OXIDATION; CO2; REDUCTION; ELECTROCHEMICAL REDUCTION; COVALENT MODIFICATION; PHOTOSYSTEM-II; H-2; EVOLUTION; DIOXIDE REDUCTION;
D O I
10.1186/s40580-020-00248-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Artificial photosynthesis offers a way of producing fuels or high-value chemicals using a limitless energy source of sunlight and abundant resources such as water, CO2, and/or O-2. Inspired by the strategies in natural photosynthesis, researchers have developed a number of homogeneous molecular systems for photocatalytic, photoelectrocatalytic, and electrocatalytic artificial photosynthesis. However, their photochemical instability in homogeneous solution are hurdles for scaled application in real life. Immobilization of molecular catalysts in solid supports support provides a fine blueprint to tackle this issue. This review highlights the recent developments in (i) techniques for immobilizing molecular catalysts in solid supports and (ii) catalytic water splitting, CO2 reduction, and O-2 reduction with the support-immobilized molecular catalysts. Remaining challenges for molecular catalyst-based devices for artificial photosynthesis are discussed in the end of this review.
引用
收藏
页数:12
相关论文
共 140 条
[1]   Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts [J].
Allongue, P ;
Delamar, M ;
Desbat, B ;
Fagebaume, O ;
Hitmi, R ;
Pinson, J ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (01) :201-207
[2]   Semiconductor behavior of a metal-organic framework (MOF) [J].
Alvaro, Mercedes ;
Carbonell, Esther ;
Ferrer, Belen ;
Llabres i Xamena, Francesc X. ;
Garcia, Hermenegildo .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (18) :5106-5112
[3]   Structure Determination and Improved Model of Plant Photosystem I [J].
Amunts, Alexey ;
Toporik, Hila ;
Borovikova, Anna ;
Nelson, Nathan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (05) :3478-3486
[4]   Derivatization of carbon surfaces by anodic oxidation of arylacetates. Electrochemical manipulation of the grafted films [J].
Andrieux, CP ;
Gonzalez, F ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (18) :4292-4300
[5]   Homolytic and heterolytic radical cleavage in the Kolbe reaction -: Electrochemical oxidation of arylmethyl carboxylate ions [J].
Andrieux, CP ;
Gonzalez, F ;
Savéant, JM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 498 (1-2) :171-180
[6]  
[Anonymous], 2010, J AM CHEM SOC, DOI DOI 10.1021/JA910055A
[7]   Bioinspired molecular catalysts for homogenous electrochemical activation of dioxygen [J].
Anxolabehere-Mallar, Elodie ;
Banse, Frederic .
CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 15 :118-124
[8]   Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? [J].
Artero, Vincent ;
Fontecave, Marc .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2338-2356
[9]   Electro-assembly of a Chromophore-Catalyst Bilayer for Water Oxidation and Photocatalytic Water Splitting [J].
Ashford, Dennis L. ;
Sherman, Benjamin D. ;
Binstead, Robert A. ;
Templeton, Joseph L. ;
Meyer, Thomas J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (16) :4778-4781
[10]   Water Oxidation by an Electropolymerized Catalyst on Derivatized Mesoporous Metal Oxide Electrodes [J].
Ashford, Dennis L. ;
Lapides, Alexander M. ;
Vannucci, Aaron K. ;
Hanson, Kenneth ;
Torelli, Daniel A. ;
Harrison, Daniel P. ;
Templeton, Joseph L. ;
Meyer, Thomas J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (18) :6578-6581