Non-Euclidean principal component analysis by Hebbian learning

被引:9
|
作者
Lange, Mandy [1 ]
Biehl, Michael [2 ]
Villmann, Thomas [1 ]
机构
[1] Univ Appl Sci Mittweida, Computat Intelligence Grp, D-09648 Mittweida, Germany
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
关键词
Principal component analysis; Hebbian learning; Kernel distances; Lp-norms; Semi-inner products; FUNCTIONAL PRINCIPAL; CLASSIFICATION; BASES;
D O I
10.1016/j.neucom.2013.11.049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis based on Hebbian learning is originally designed for data processing in Euclidean spaces. We present in this contribution an extension of Oja's Hebbian learning approach for non-Euclidean spaces. We show that for Banach spaces the Hebbian learning can be carried out using the underlying semi-inner product. Prominent examples for such Banach spaces are the l(p)-spaces for p not equal 2. For kernels spaces, as applied in support vector machines or kernelized vector quantization, this approach can be formulated as an online learning scheme based on the differentiable kernel. Hence, principal component analysis can be explicitly carried out in the respective data spaces but now equipped with a non-Euclidean metric. In the article we provide the theoretical framework and give illustrative examples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 50 条
  • [1] Non-euclidean Principal Component Analysis for Matrices by Hebbian Learning
    Lange, Mandy
    Nebel, David
    Villmann, Thomas
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING ICAISC 2014, PT I, 2014, 8467 : 77 - 88
  • [2] Robust Hebbian learning and noisy principal component analysis
    Diamantaras, KI
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 67 (1-2) : 5 - 24
  • [3] Transformation of Non-Euclidean Space to Euclidean Space for Efficient Learning of Singular Vectors
    Lee, Seunghyun
    Song, Byung Cheol
    IEEE ACCESS, 2020, 8 : 127074 - 127083
  • [4] Neural networks in non-Euclidean spaces
    Duch, W
    Adamczak, R
    Diercksen, GHF
    NEURAL PROCESSING LETTERS, 1999, 10 (03) : 201 - 210
  • [5] Neural Networks in Non-Euclidean Spaces
    Włodzisław Duch
    Rafał Adamczak
    Geerd H.F. Diercksen
    Neural Processing Letters, 1999, 10 : 201 - 210
  • [6] Non-Euclidean Dissimilarities: Causes and Informativeness
    Duin, Robert P. W.
    Pekalska, Elzbieta
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 324 - +
  • [7] On principal component analysis, cosine and Euclidean measures in information retrieval
    Korenius, Tuomo
    Laurikkala, Jorma
    Juhola, Martti
    INFORMATION SCIENCES, 2007, 177 (22) : 4893 - 4905
  • [8] Extension of the Generalized Hebbian Algorithm for principal component extraction
    Ham, FM
    Kim, I
    APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION, 1998, 3455 : 274 - 285
  • [9] On non-Euclidean crystallography, some football manifolds
    Molnar, Emil
    STRUCTURAL CHEMISTRY, 2012, 23 (04) : 1057 - 1069
  • [10] Application of Euclidean distance measurement and principal component analysis for gene identification
    Ghosh, Antara
    Barman, Soma
    GENE, 2016, 583 (02) : 112 - 120