A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures

被引:140
作者
Liu, Xingtao [1 ]
Wu, Ji [1 ]
Zhang, Chenbin [1 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of energy; Neural network; Dynamic current; Temperature; CHARGE ESTIMATION; OF-CHARGE; CAPACITY ESTIMATION; MANAGEMENT-SYSTEMS; SOC ESTIMATION; MODEL; PARAMETER; VOLTAGE; FILTER; PACKS;
D O I
10.1016/j.jpowsour.2014.07.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The state of energy (SUE) of Li-ion batteries is a critical index for energy optimization and management. In the applied battery system, the fact that the discharge current and the temperature change due to the dynamic load will result in errors in the estimation of the residual energy for the battery. To address this issue, a new method based on the Back-Propagation Neural Network (BPNN) is presented for the SUE estimation. In the proposed approach, in order to take into account the energy loss on the internal resistance, the electrochemical reactions and the decrease of the open-circuit voltage (OCV), the SUE is introduced to replace the state of charge (SOC) to describe the residual energy of the battery. Additionally, the discharge current and temperature are taken as the training inputs of the BPNN to overcome their interference on the SOE estimation. The simulation experiments on LiFePO4 batteries indicate that the proposed method based on the BPNN can estimate the SUE much more reliably and accurately. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [41] State of charge estimation at different temperatures based on dynamic thermal model for lithium-ion batteries
    Zheng, Xuan
    Zhang, Zhuqian
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [42] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [43] Unbiased Model Identification and State of Energy Estimation of Lithium-Ion Battery
    Wei, Zhongbao
    He, Hongwen
    Hu, Jian
    2020 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2020, : 5595 - 5599
  • [44] Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles
    Hua, Yin
    Xu, Min
    Li, Mian
    Ma, Chengbin
    Zhao, Chen
    ENERGIES, 2015, 8 (05): : 3556 - 3577
  • [45] An Accurate SOC Estimation System for Lithium-ion Batteries by EKF with Dynamic Noise Adjustment
    Lin, Lei
    Fukui, Masahiro
    Takaba, Kyotsugu
    2015 15TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2015, : 33 - 36
  • [46] Fast Estimation of State of Charge for Lithium-Ion Batteries
    Wu, Shing-Lih
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    ENERGIES, 2014, 7 (05) : 3438 - 3452
  • [47] A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter
    Chen, Yixing
    Huang, Deqing
    Zhu, Qiao
    Liu, Weiqun
    Liu, Congzhi
    Xiong, Neng
    ENERGIES, 2017, 10 (09)
  • [48] Study on Modeling, Experimentation and State of Charge Estimation of Parallel Connected Lithium-ion Batteries
    Huang, Xin
    Feng, Xuning
    Han, Xuebing
    Lu, Languang
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (02): : 1264 - 1286
  • [49] A Hierarchical State of Charge Estimation Method for Lithium-ion Batteries via XGBoost and Kalman Filter
    Song, Shiyu
    Zhang, Xiaoyong
    Gao, Dianzhu
    Jiang, Fu
    Wu, Yue
    Huang, Jiahao
    Gong, Yadong
    Liu, Bowen
    Huang, Zhiwu
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2317 - 2322
  • [50] A Hybrid Battery Model and State of Health Estimation Method for Lithium-Ion Batteries
    Sarikurt, Turev
    Ceylan, Murat
    Balikci, Abdulkadir
    2014 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON 2014), 2014, : 1349 - 1356