A new pose invariant face recognition system using PCA and ANFIS

被引:23
作者
Sharma, Reecha [1 ]
Patterh, M. S. [1 ]
机构
[1] Punjabi Univ, Dept Elect & Commun Engn, Patiala 147002, Punjab, India
来源
OPTIK | 2015年 / 126卷 / 23期
关键词
Principle component analysis (PCA); Face recognition; ANFIS; Score value;
D O I
10.1016/j.ijleo.2015.08.205
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, an efficient pose invariant face recognition system using PCA and ANFIS (PCA-ANFIS) has been proposed. The features of an image under test have been extracted using PCA then neuro fuzzy based system ANFIS is used for recognition. The proposed system recognizes the face images under a variety of pose conditions by using ANFIS. The training face image dataset is processed by PCA technique to compute the score values, which are then utilized in the recognition process. The proposed face recognition technique with neuro-fuzzy system recognizes the input face images with high recognition ratio. The proposed approach is implemented in the MATLAB platform and it is evaluated by employing a variety of database images under various pose variant conditions. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:3483 / 3487
页数:5
相关论文
共 14 条
  • [1] Abdel-Kader Rehab F., 2008, INT J ELECT COMPUT E, V3, P488
  • [2] [Anonymous], P IEEE C COMP VIS PA
  • [3] FACE RECOGNITION - FEATURES VERSUS TEMPLATES
    BRUNELLI, R
    POGGIO, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) : 1042 - 1052
  • [4] Edwards G. J., 1998, Computer Vision - ECCV'98. 5th European Conference on Computer Vision. Proceedings, P581, DOI 10.1007/BFb0054766
  • [5] Kee SC, 2000, IEICE T INF SYST, VE83D, P1466
  • [6] Li WJ, 2004, PROC INT C TOOLS ART, P486
  • [7] Li Xi, 2009, LECT NOTES COMPUT SC
  • [8] Navaz SS, 2013, IJCNWMC, V3, P245
  • [9] Ng H.F., 2006, Asian Journal of Health and Information Sciences, V1, P101
  • [10] Shermina J, 2010, INT J COMPUT SCI NET, V10, P106