Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy

被引:65
作者
Islam, Abul Bashar Mir Md Khademul [1 ]
Khan, Md Abdullah-Al-Kamran [2 ]
机构
[1] Univ Dhaka, Dept Genet Engn & Biotechnol, Dhaka 1000, Bangladesh
[2] BRAC Univ, Dept Math & Nat Sci, Dhaka, Bangladesh
关键词
CYTOKINE STORM; PROTEIN-C; SP-B; PULMONARY; HYPOXIA; ACTIVATION; GENE; HIF; PATHOGENESIS; POLYPEPTIDE;
D O I
10.1038/s41598-020-76404-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An incomplete understanding of the molecular mechanisms behind impairment of lung pathobiology by COVID-19 complicates its clinical management. In this study, we analyzed the gene expression pattern of cells obtained from biopsies of COVID-19-affected patient and compared to the effects observed in typical SARS-CoV-2 and SARS-CoV-infected cell-lines. We then compared gene expression patterns of COVID-19-affected lung tissues and SARS-CoV-2-infected cell-lines and mapped those to known lung-related molecular networks, including hypoxia induced responses, lung development, respiratory processes, cholesterol biosynthesis and surfactant metabolism; all of which are suspected to be downregulated following SARS-CoV-2 infection based on the observed symptomatic impairments. Network analyses suggest that SARS-CoV-2 infection might lead to acute lung injury in COVID-19 by affecting surfactant proteins and their regulators SPD, SPC, and TTF1 through NSP5 and NSP12; thrombosis regulators PLAT, and EGR1 by ORF8 and NSP12; and mitochondrial NDUFA10, NDUFAF5, and SAMM50 through NSP12. Furthermore, hypoxia response through HIF-1 signaling might also be targeted by SARS-CoV-2 proteins. Drug enrichment analysis of dysregulated genes has allowed us to propose novel therapies, including lung surfactants, respiratory stimulants, sargramostim, and oseltamivir. Our study presents a distinct mechanism of probable virus induced lung damage apart from cytokine storm.
引用
收藏
页数:16
相关论文
共 118 条
[1]   Response to hypoxia involves transforming growth factor-β2 and Smad proteins in human endothelial cells [J].
Akman, HO ;
Zhang, H ;
Siddiqui, MAQ ;
Solomon, W ;
Smith, ELP ;
Batuman, OA .
BLOOD, 2001, 98 (12) :3324-3331
[2]  
Andrews S, 2010, FASTQC QUALITY CONTR
[3]  
[Anonymous], 2020, NCBI GENE
[4]  
[Anonymous], 2010, GENOME BIOL, DOI DOI 10.1186/gb-2010-11-10-r106
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Respiratory stimulant use in chronic obstructive pulmonary disease [J].
Bales, MJ ;
Timpe, EM .
ANNALS OF PHARMACOTHERAPY, 2004, 38 (10) :1722-1725
[7]   Role of HDAC2 in the Pathophysiology of COPD [J].
Barnes, Peter J. .
ANNUAL REVIEW OF PHYSIOLOGY, 2009, 71 :451-464
[8]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[9]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[10]   Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 [J].
Blanco-Melo, Daniel ;
Nilsson-Payant, Benjamin E. ;
Liu, Wen-Chun ;
Uhl, Skyler ;
Hoagland, Daisy ;
Moller, Rasmus ;
Jordan, Tristan X. ;
Oishi, Kohei ;
Panis, Maryline ;
Sachs, David ;
Wang, Taia T. ;
Schwartz, Robert E. ;
Lim, Jean K. ;
Albrecht, Randy A. ;
tenOever, Benjamin R. .
CELL, 2020, 181 (05) :1036-+