Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications

被引:437
作者
Cheng, Chong [1 ]
Li, Shuang [2 ]
Thomas, Arne [2 ]
Kotov, Nicholas A. [3 ]
Haag, Rainer [1 ]
机构
[1] Free Univ Berlin, Inst Chem & Biochem, Takustr 3, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Funct Mat, Dept Chem, Hardenbergstr 40, D-10623 Berlin, Germany
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
MICROBIAL FUEL-CELL; MESENCHYMAL STEM-CELLS; WALLED CARBON NANOTUBES; OXIDE COMPOSITE FILMS; EXTRACELLULAR ELECTRON-TRANSFER; CIRCULATING TUMOR-CELLS; CONDUCTING POLYMER NANOCOMPOSITE; CHEMICALLY-CONVERTED GRAPHENE; IN-VIVO BIODISTRIBUTION; BOTTOM-UP FABRICATION;
D O I
10.1021/acs.chemrev.6b00520
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
引用
收藏
页码:1826 / 1914
页数:89
相关论文
共 811 条
[1]   Graphene induces spontaneous cardiac differentiation in embryoid bodies [J].
Ahadian, Samad ;
Zhou, Yuanshu ;
Yamada, Shukuyo ;
Estili, Mehdi ;
Liang, Xiaobin ;
Nakajima, Ken ;
Shiku, Hitoshi ;
Matsue, Tomokazu .
NANOSCALE, 2016, 8 (13) :7075-7084
[2]   Facile and green production of aqueous graphene dispersions for biomedical applications [J].
Ahadian, Samad ;
Estili, Mehdi ;
Surya, Velappa Jayaraman ;
Ramon-Azcon, Javier ;
Liang, Xiaobin ;
Shiku, Hitoshi ;
Ramalingam, Murugan ;
Matsue, Tomokazu ;
Sakka, Yoshio ;
Bae, Hojae ;
Nakajima, Ken ;
Kawazoe, Yoshiyuki ;
Khademhosseini, Ali .
NANOSCALE, 2015, 7 (15) :6436-6443
[3]   Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films [J].
Ahadian, Samad ;
Ramon-Azcon, Javier ;
Chang, Haixin ;
Liang, Xiaobin ;
Kaji, Hirokazu ;
Shiku, Hitoshi ;
Nakajima, Ken ;
Ramalingam, Murugan ;
Wu, Hongkai ;
Matsue, Tomokazu ;
Khademhosseini, Ali .
RSC ADVANCES, 2014, 4 (19) :9534-9541
[4]   Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system [J].
Akhavan, Omid .
JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (19) :3169-3190
[5]   Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells [J].
Akhavan, Omid ;
Ghaderi, Elham ;
Shirazian, Soheil A. ;
Rahighi, Reza .
CARBON, 2016, 97 :71-77
[6]   Ultra-sensitive detection of leukemia by graphene [J].
Akhavan, Omid ;
Ghaderi, Elham ;
Hashemi, Ehsan ;
Rahighi, Reza .
NANOSCALE, 2014, 6 (24) :14810-14819
[7]   Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels [J].
Akhavan, Omid ;
Ghaderi, Elham ;
Rahighi, Reza ;
Abdolahad, Mohammad .
CARBON, 2014, 79 :654-663
[8]   The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation [J].
Akhavan, Omid ;
Ghaderi, Elham .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (34) :5602-5611
[9]   Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets [J].
Akhavan, Omid ;
Ghaderi, Elham ;
Abouei, Elham ;
Hatamie, Shadie ;
Ghasemi, Effat .
CARBON, 2014, 66 :395-406
[10]   Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons [J].
Akhavan, Omid ;
Ghaderi, Elham .
NANOSCALE, 2013, 5 (21) :10316-10326