Assessing the incremental predictive performance of novel biomarkers over standard predictors

被引:19
作者
Xanthakis, Vanessa [1 ,2 ,3 ]
Sullivan, Lisa M. [2 ]
Vasan, Ramachandran S. [1 ,3 ]
Benjamin, Emelia J. [1 ,3 ]
Massaro, Joseph M. [1 ,2 ,4 ]
D'Agostino, Ralph B., Sr. [1 ,4 ]
Pencina, Michael J. [1 ,2 ,4 ]
机构
[1] Framingham Heart Dis Epidemiol Study, Framingham, MA USA
[2] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02118 USA
[3] Boston Univ, Sch Med, Sect Prevent Med & Epidemiol, Boston, MA 02118 USA
[4] Boston Univ, Dept Math & Stat, Boston, MA 02118 USA
关键词
biomarkers; model discrimination; risk model; risk prediction; CORONARY-HEART-DISEASE; RISK SCORE; CARDIOVASCULAR RISK; VALIDATION; MODELS; WOMEN; MARKER;
D O I
10.1002/sim.6165
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is unclear to what extent the incremental predictive performance of a novel biomarker is impacted by the method used to control for standard predictors. We investigated whether adding a biomarker to a model with a published risk score overestimates its incremental performance as compared to adding it to a multivariable model with individual predictors (or a composite risk score estimated from the sample of interest) and to a null model. We used 1000 simulated datasets (with a range of risk factor distributions and event rates) to compare these methods, using the continuous net reclassification index (NRI), the integrated discrimination index (IDI), and change in the C-statistic as discrimination metrics. The new biomarker was added to the following: null model, model including a published risk score, model including a composite risk score estimated from the sample of interest, and multivariable model with individual predictors. We observed a gradient in the incremental performance of the biomarker, with the null model resulting in the highest predictive performance of the biomarker and the model using individual predictors resulting in the lowest (mean increases in C-statistic between models without and with the biomarker: 0.261, 0.085, 0.030, and 0.031; NRI: 0.767, 0.621, 0.513, and 0.530; IDI: 0.153, 0.093, 0.053 and 0.057, respectively). These findings were supported by the Framingham Study data predicting atrial fibrillation using novel biomarkers. We recommend that authors report the effect of a new biomarker after controlling for standard predictors modeled as individual variables. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:2577 / 2584
页数:8
相关论文
共 17 条
  • [1] The effect of including C-reactive protein in cardiovascular risk prediction models for women
    Cook, Nancy R.
    Buring, Julie E.
    Ridker, Paul M.
    [J]. ANNALS OF INTERNAL MEDICINE, 2006, 145 (01) : 21 - 29
  • [2] DAWBER TR, 1951, AM J PUBLIC HEALTH, V41, P279
  • [3] Hlatky Mark A, 2009, Circulation, V119, P2408, DOI 10.1161/CIRCULATIONAHA.109.192278
  • [4] Clinical utility of different lipid measures for prediction of coronary heart disease in men and women
    Ingelsson, Erik
    Schaefer, Ernst J.
    Contois, John H.
    McNamara, Judith R.
    Sullivan, Lisa
    Keyes, Michelle J.
    Pencina, Michael J.
    Schoonmaker, Christopher
    Wilson, Peter W. F.
    D'Agostino, Ralph B.
    Vasan, Ramachandran S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 298 (07): : 776 - 785
  • [5] INVESTIGATION OF CORONARY HEART-DISEASE IN FAMILIES - FRAMINGHAM OFFSPRING STUDY
    KANNEL, WB
    FEINLEIB, M
    MCNAMARA, PM
    GARRISON, RJ
    CASTELLI, WP
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1979, 110 (03) : 281 - 290
  • [6] Multimarker Prediction of Coronary Heart Disease Risk The Women's Health Initiative
    Kim, Hyeon Chang
    Greenland, Philip
    Rossouw, Jacques E.
    Manson, JoAnn E.
    Cochrane, Barbara B.
    Lasser, Norman L.
    Limacher, Marian C.
    Lloyd-Jones, Donald M.
    Margolis, Karen L.
    Robinson, Jennifer G.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 55 (19) : 2080 - 2091
  • [7] Risk prediction models: II. External validation, model updating, and impact assessment
    Moons, Karel G. M.
    Kengne, Andre Pascal
    Grobbee, Diederick E.
    Royston, Patrick
    Vergouwe, Yvonne
    Altman, Douglas G.
    Woodward, Mark
    [J]. HEART, 2012, 98 (09) : 691 - 698
  • [8] Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    Pencina, Michael J.
    D'Agostino, Ralph B., Sr.
    D'Agostino, Ralph B., Jr.
    Vasan, Ramachandran S.
    [J]. STATISTICS IN MEDICINE, 2008, 27 (02) : 157 - 172
  • [9] Statistical methods for assessment of added usefulness of new biomarkers
    Pencina, Michael J.
    D'Agostino, Ralph B.
    Vasan, Ramachandran S.
    [J]. CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2010, 48 (12) : 1703 - 1711
  • [10] Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
    Pencina, Michael J.
    D'Agostino, Ralph B., Sr.
    Steyerberg, Ewout W.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (01) : 11 - 21