Optimal control problem of a generalized Ginzburg-Landau model equation in population problems

被引:8
作者
Zhao, Xiaopeng [1 ]
Duan, Ning [2 ]
Liu, Bo [2 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130023, Peoples R China
关键词
optimal control; Ginzburg-Landau model equation; optimal solution; optimality condition; CAHN-HILLIARD EQUATION; PARABOLIC EQUATIONS; DIFFUSION-MODEL;
D O I
10.1002/mma.2806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem for distributed optimal control of the generalized Ginzburg-Landu model equation in population. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved, and the optimality system is established. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations [J].
Atwell, JA ;
King, BB .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (1-3) :1-19
[3]   Optimal control of the convection-diffusion equation using stabilized finite element methods [J].
Becker, Roland ;
Vexler, Boris .
NUMERISCHE MATHEMATIK, 2007, 106 (03) :349-367
[4]  
Chen G., 1994, COMMENTATIONS MATH U, V35, P431
[5]  
Chen G, 2000, ACTA MATH APPL SIN-E, V23, P507
[6]  
Chen G, 1994, CHINESE J CONT MATH, V15, P275
[7]   A GENERALIZED DIFFUSION-MODEL FOR GROWTH AND DISPERSAL IN A POPULATION [J].
COHEN, DS ;
MURRAY, JD .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 12 (02) :237-249
[8]  
Ito K, 1998, INT S NUM M, V126, P153
[9]   Optimal Control Problems for Evolution Equations of Parabolic Type with Nonlinear Perturbations [J].
Jeong, Jin-Mun ;
Ju, Eun-Young ;
Cheon, Su-Jin .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (03) :573-588
[10]  
LIU BP, 1984, J INTEGRAL EQUAT, V6, P175