On the transformation group of the second Painleve equation

被引:4
作者
Umemura, H [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1017/S0027763000007169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for the second Painleve equation y " = 2y(3) + ty + alpha, the Backlund transformation group G, which is isomorphic to the extended affine Weyl group of type (A) over cap(1), operates regularly on the natural projectification chi(c)/C(c, t) of the space of initial conditions, where c = alpha - 1/2. chi(c)/C(c, t) has a natural model chi[c]/C(t)[c]. The group G does not operate, however, regularly on chi[c]/C(t)[c]. To have a family of projective surfaces over C(t)[c] on which G operates regularly, we have to blow up the model chi[c] along the projective lines corresponding to the Riccati type solutions.
引用
收藏
页码:15 / 46
页数:32
相关论文
共 7 条
[1]  
MATANO T, IN PRESS J MATH SOC
[2]  
Murata Y., 1985, Funkc. Ekvacioj, V28, P1
[3]   STUDIES ON THE PAINLEVE EQUATIONS .3. 2ND AND 4TH PAINLEVE EQUATIONS, PII AND PIV [J].
OKAMOTO, K .
MATHEMATISCHE ANNALEN, 1986, 275 (02) :221-255
[4]  
OKAMOTO K, 1979, JAPAN J MATH NS, V5, P1, DOI [DOI 10.4099/MATH1924.5.1, 10.4099/math1924.5.1]
[5]  
Shioda T., 1997, I Funkcial. Ekvac., V40, P271
[6]   Solutions of the second and fourth Painleve equations, I [J].
Umemura, H ;
Watanabe, H .
NAGOYA MATHEMATICAL JOURNAL, 1997, 148 :151-198
[7]  
UMEMURA H, PAINLEVE EQUATIONS D