Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria

被引:38
|
作者
Enebak, SA [1 ]
Carey, WA [1 ]
机构
[1] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA
关键词
ISR; Pinus taeda;
D O I
10.1094/PDIS.2000.84.3.306
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Trials conducted in 1997 and 1998 tested eight strains of plans growth-promoting rhizobacteria (PGPR) for their capacity to induce systemic protection in loblolly pine to the causal agent of fusiform rust. Pine seeds were treated with bacteria at time of sowing, and seedlings were artificially inoculated with basidiospores of Cronartium quercuum f. sp. fusiforme 1 month Inter. Six months after basidiospore inoculation, seedlings were evaluated for the fusoid swelling or galls characteristic of rust infection. Compared with seedlings from seed not treated with bacteria, two bacterial isolates, Bacillus pumilus (SE34) and Serratia marcescens (90-166), significantly (P = 0.05) reduced the number of galls in 1997 and 1998. Combined data from 1997 and 1998 resulted in two additional isolates, B. pumilus (INR7) and B. pumilus (SE52), significantly (P = 0.05) reducing the number of galls. Averaged over both years, 31% of control seedlings were infected with fusiform rust, while those seedlings treated with bacterial strains SE34, 90-166, INR7, and SE52 had 13, 14, 15, and 16% infection, respectively. These four PGPR strains ap pear to have induced systemic resistance to fusiform rust in loblolly pine, resulting in less infection over nontreated control seedlings.
引用
收藏
页码:306 / 308
页数:3
相关论文
共 50 条
  • [21] Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases
    Jetiyanon, K
    Kloepper, JW
    BIOLOGICAL CONTROL, 2002, 24 (03) : 285 - 291
  • [22] Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth
    Grobelak, A.
    Napora, A.
    Kacprzak, M.
    ECOLOGICAL ENGINEERING, 2015, 84 : 22 - 28
  • [23] Plant growth-promoting rhizobacteria promote plant size inequality
    Gange, Alan C.
    Gadhave, Kiran R.
    SCIENTIFIC REPORTS, 2018, 8
  • [24] Plant growth-promoting rhizobacteria promote plant size inequality
    Alan C. Gange
    Kiran R. Gadhave
    Scientific Reports, 8
  • [25] Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis
    Tsukanova, K. A.
    Chebotar, V. K.
    Meyer, J. J. M.
    Bibikova, T. N.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 113 : 91 - 102
  • [26] Applications of free living plant growth-promoting rhizobacteria
    Lucy, M
    Reed, E
    Glick, BR
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2004, 86 (01): : 1 - 25
  • [27] Root colonization by inoculated plant growth-promoting rhizobacteria
    Benizri, E
    Baudoin, E
    Guckert, A
    BIOCONTROL SCIENCE AND TECHNOLOGY, 2001, 11 (05) : 557 - 574
  • [28] Plant growth-promoting rhizobacteria used in South Korea
    Ibal, Jerald Conrad
    Jung, Byung Kwon
    Park, Chang Eon
    Shin, Jae-Ho
    APPLIED BIOLOGICAL CHEMISTRY, 2018, 61 (06) : 709 - 716
  • [29] Applications of free living plant growth-promoting rhizobacteria
    M. Lucy
    E. Reed
    Bernard R. Glick
    Antonie van Leeuwenhoek, 2004, 86 : 1 - 25
  • [30] Endophytic colonization of spruce by plant growth-promoting rhizobacteria
    Shishido, M
    Breuil, C
    Chanway, CP
    FEMS MICROBIOLOGY ECOLOGY, 1999, 29 (02) : 191 - 196