Communication: Thermodynamics of stacking disorder in ice nuclei

被引:35
作者
Quigley, D. [1 ,2 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
MONTE-CARLO METHOD; SUPERCOOLED WATER; CUBIC ICE; LIQUID WATER; CRYSTALLINE SOLIDS; PHASE-TRANSITIONS; HEAT-CAPACITY; HEXAGONAL ICE; GLASSY WATER; NUCLEATION;
D O I
10.1063/1.4896376
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple Ising-like model for the stacking thermodynamics of ice 1 is constructed for nuclei in supercooled water, and combined with classical nucleation theory. For relative stabilities of cubic and hexagonal ice I within the range of experimental estimates, this predicts critical nuclei are stacking disordered at strong sub-cooling, consistent with recent experiments. At higher temperatures nucleation of pure hexagonal ice is recovered. Lattice-switching Monte-Carlo is applied to accurately compute the relative stability of cubic and hexagonal ice for the popular mW model of water. Results demonstrate that this model fails to adequately capture the relative energetics of the two poly-types, leading to stacking disorder at all temperatures. (C) 2014 Author(s).
引用
收藏
页数:5
相关论文
共 39 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   Forward flux sampling-type schemes for simulating rare events: Efficiency analysis [J].
Allen, Rosalind J. ;
Frenkel, Daan ;
ten Wolde, Pieter Rein .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (19)
[3]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[4]   Lattice-switch Monte Carlo method [J].
Bruce, AD ;
Jackson, AN ;
Ackland, GJ ;
Wilding, NB .
PHYSICAL REVIEW E, 2000, 61 (01) :906-919
[5]   Free energy of crystalline solids: A lattice-switch Monte Carlo method [J].
Bruce, AD ;
Wilding, NB ;
Ackland, GJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (16) :3002-3005
[6]   Challenges in molecular simulation of homogeneous ice nucleation [J].
Brukhno, Andrey V. ;
Anwar, Jamshed ;
Davidchack, Ruslan ;
Handel, Richard .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (49)
[7]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[8]   ENTHALPY CHANGES AND HEAT-CAPACITY CHANGES IN TRANSFORMATIONS FROM HIGH-SURFACE-AREA AMORPHOUS ICE TO STABLE HEXAGONAL ICE [J].
GHORMLEY, JA .
JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (01) :503-&
[9]   ENERGIES OF THE PHASES OF ICE AT LOW-TEMPERATURE AND PRESSURE RELATIVE TO ICE IH [J].
HANDA, YP ;
KLUG, DD ;
WHALLEY, E .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1988, 66 (04) :919-924
[10]   Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface [J].
Handel, Richard ;
Davidchack, Ruslan L. ;
Anwar, Jamshed ;
Brukhno, Andrey .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)