High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics

被引:20
|
作者
Cao, Qunsheng [1 ]
Kanapady, Ramdev
Reitich, Ferriando
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Informat Sci & Technol, Nanjing 210016, Peoples R China
[2] Univ Minnesota, Dept Engn Mech, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
high-order accuracy; multiresolution time domain (MRTD); Runge-Kutta methods; wavelets; MAXWELLS EQUATIONS; MRTD SCHEMES; WAVELETS; STABILITY; ACCURACY; TARGETS;
D O I
10.1109/TMTT.2006.879130
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we introduce a class of Runge-Kutta multiresolution time-domain (RK-MRTD) methods for problems of electromagnetic wave propagation that can attain an arbitrarily high order of convergence in both space and time. The methods capitalize on the high-order nature of spatial multiresolution approximations by incorporating time integrators with convergence properties that are commensurate with these. More precisely, the classical MRTD approach is adapted here to incorporate mth-order m-stage low-storage Runge-Kutta methods for the time integration. As we show, if compactly supported wavelets of order N are used (e.g., the Daubechies D-N functions) and m = N, then the RK-MRTD methods deliver solutions that converge with this overall order; a variety of examples illustrate these properties. Moreover, we further show that the resulting algorithms are well suited to parallel implementations, as we present results that demonstrate their near-optimal scaling.
引用
收藏
页码:3316 / 3326
页数:11
相关论文
共 50 条
  • [21] Optimal Runge-Kutta Stability Polynomials for Multidimensional High-Order Methods
    Nasab, Siavash Hedayati
    Pereira, Carlos A.
    Vermeire, Brian C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [22] HIGH-ORDER IMPLICIT RUNGE-KUTTA METHODS FOR UNSTEADY INCOMPRESSIBLE FLOWS
    Montlaur, A.
    Fernandez-Mendez, S.
    Huerta, A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2011, 27 (01): : 77 - 91
  • [23] PARALLEL ITERATION OF HIGH-ORDER RUNGE-KUTTA METHODS WITH STEPSIZE CONTROL
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (01) : 111 - 127
  • [24] High order Runge-Kutta methods on manifolds
    Munthe-Kaas, H
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (01) : 115 - 127
  • [25] On symmetric Runge-Kutta methods of high order
    Chan, R.P.K.
    Computing (Vienna/New York), 1990, 45 (04): : 301 - 309
  • [26] HIGH ORDER MULTISYMPLECTIC RUNGE-KUTTA METHODS
    McLachlan, Robert I.
    Ryland, Brett N.
    Sun, Yajuan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : A2199 - A2226
  • [27] Time-domain simulation of nonlinear circuits through implicit Runge-Kutta methods
    Maffezzoni, Paolo
    Codecasa, Lorenzo
    D'Amore, Dario
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (02) : 391 - 400
  • [28] Optimal Runge-Kutta schemes for pseudo time-stepping with high-order unstructured methods
    Vermeire, B. C.
    Loppi, N. A.
    Vincent, P. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 383 : 55 - 71
  • [29] APPLICATION OF HIGH-ORDER RUNGE-KUTTA METHODS IN THE MAGNETIC-BINARY PROBLEM
    SIMOS, T
    KALVOURIDIS, TJ
    PAPAGEORGIOU, G
    ASTROPHYSICS AND SPACE SCIENCE, 1988, 147 (02) : 271 - 285
  • [30] Analysis for Three-Dimensional Curved Objects by Runge-Kutta High Order Time-Domain Method
    Zhu, Min
    Cao, Qunsheng
    Zhao, Lei
    Wang, Yi
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2015, 30 (01): : 86 - 92