On a four-parameter generalization of some special sequences

被引:7
作者
da Silva, Robson [1 ]
de Oliveira, Kelvin Souza [2 ]
da Graca Neto, Almir Cunha [3 ]
机构
[1] Univ Fed Sao Paulo, BR-12247014 Sao Jose Dos Campos, SP, Brazil
[2] Univ Fed Amazonas, BR-69103128 Manaus, Amazonas, Brazil
[3] Univ Estado Amazonas, BR-69055038 Manaus, Amazonas, Brazil
关键词
Generalized Fibonacci numbers; Generalized Lucas numbers; Tilings; Identities; FIBONACCI NUMBERS; LUCAS-NUMBERS; PELL NUMBERS; IDENTITIES; GRAPHS;
D O I
10.1016/j.dam.2018.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new four-parameter sequence that simultaneously generalizes some well-known integer sequences, including Fibonacci, Padovan, Jacobsthal, Pell, and Lucas numbers. Combinatorial interpretations are discussed and many identities for this general sequence are derived. As a consequence, a number of identities for Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and Narayana numbers as well as some of their generalizations are obtained. We also present the Cassini formula for the new sequence. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 171
页数:18
相关论文
共 27 条
  • [1] Generalized Fibonacci Polynomials and Fibonomial Coefficients
    Amdeberhan, Tewodros
    Chen, Xi
    Moll, Victor H.
    Sagan, Bruce E.
    [J]. ANNALS OF COMBINATORICS, 2014, 18 (04) : 541 - 562
  • [2] Bednarz U., 2013, Comment. Math, V53, P34, DOI [DOI 10.14708/CM.V53I1.771, 10.14708/cm.v53i1.771]
  • [3] Bednarz U., 2015, J APPL MATH
  • [4] Bednarz U, 2015, ARS COMBINATORIA, V118, P391
  • [5] BENJAMIN A. T., 2003, DOLCIANI MATH EXP, V27
  • [6] Tiling proofs of recent sum identities involving Pell numbers
    Benjamin, Arthur T.
    Plott, Sean S.
    Sellers, James A.
    [J]. ANNALS OF COMBINATORICS, 2008, 12 (03) : 271 - 278
  • [7] BicknellJohnson M, 1996, FIBONACCI QUART, V34, P121
  • [8] Combinatorial Proofs of Various q-Pell Identities via Tilings
    Briggs, Karen S.
    Little, David P.
    Sellers, James A.
    [J]. ANNALS OF COMBINATORICS, 2010, 14 (04) : 407 - 418
  • [9] Brualdi R. A., 1991, COMBINATORIAL MATRIX, P39
  • [10] Catarino P., 2013, INT J MATH ANAL, V7, P1877, DOI DOI 10.12988/IJMA.2013.35131