PEARLING BIFURCATIONS IN THE STRONG FUNCTIONALIZED CAHN-HILLIARD FREE ENERGY

被引:10
|
作者
Kraitzman, Noa [1 ]
Promislow, Keith [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
functionalized Cahn-Hilliard; pearling stability; strong functionalization; generic hypersurfaces; INTERFACES; EQUATION;
D O I
10.1137/16M1108406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The functionalized Cahn-Hilliard free energy supports phase-separated morphologies of distinct codimension, including codimension-one bilayer and codimension-two filament morphologies. We characterize the linear stability of bilayer and filament morphologies associated to hypersurfaces within the strong functionalization scaling. In particular, we show that the onset of the pearling instability, which triggers fast in-plane oscillations associated to bifurcation to higher codimensional morphology, is controlled by the functionalization parameters and the spatially constant value of the far-field chemical potential. Crucially, we show that onset of pearling is independent of the shape of the defining hypersurface.
引用
收藏
页码:3395 / 3426
页数:32
相关论文
共 50 条
  • [41] Efficient Energy Stable Schemes with Spectral Discretization in Space for Anisotropic Cahn-Hilliard Systems
    Chen, Feng
    Shen, Jie
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (05) : 1189 - 1208
  • [42] Stability and discretization error analysis for the Cahn-Hilliard system via relative energy estimates
    Brunk, Aaron
    Egger, Herbert
    Habrich, Oliver
    Lukacova-Medvidova, Maria
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) : 1297 - 1322
  • [43] Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential
    Bartels, Soeren
    Mueller, Ruediger
    NUMERISCHE MATHEMATIK, 2011, 119 (03) : 409 - 435
  • [44] A generalized Allen-Cahn model with mass source and its Cahn-Hilliard limit
    Shi, Wei
    Yang, Xin-Guang
    Cui, Lubin
    Miranville, Alain
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (10):
  • [45] Bounded solutions and their asymptotics for a doubly nonlinear Cahn-Hilliard system
    Bonetti, Elena
    Colli, Pierluigi
    Scarpa, Luca
    Tomassetti, Giuseppe
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [46] A degenerating Cahn-Hilliard system coupled with complete damage processes
    Heinemann, Christian
    Kraus, Christiane
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 388 - 403
  • [47] Mobility inference of the Cahn-Hilliard equation from a model experiment
    Mao, Zirui
    Demkowicz, Michael J.
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (13) : 2830 - 2842
  • [48] Asymptotic behavior of the coupled Allen-Cahn/Cahn-Hilliard system with proliferation term
    Makki, Ahmad
    Mheich, Rim
    Petcu, Madalina
    Talhouk, Raafat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (01)
  • [49] LONGTIME BEHAVIOR FOR A GENERALIZED CAHN-HILLIARD SYSTEM WITH FRACTIONAL OPERATORS
    Colli, Pierluigi
    Gilardi, Gianni
    Sprekels, Jurgen
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2020, 98
  • [50] A Cahn-Hilliard model in a domain with non-permeable walls
    Goldstein, Gisele Ruiz
    Miranville, Alain
    Schimperna, Giulio
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (08) : 754 - 766