PEARLING BIFURCATIONS IN THE STRONG FUNCTIONALIZED CAHN-HILLIARD FREE ENERGY

被引:10
|
作者
Kraitzman, Noa [1 ]
Promislow, Keith [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
functionalized Cahn-Hilliard; pearling stability; strong functionalization; generic hypersurfaces; INTERFACES; EQUATION;
D O I
10.1137/16M1108406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The functionalized Cahn-Hilliard free energy supports phase-separated morphologies of distinct codimension, including codimension-one bilayer and codimension-two filament morphologies. We characterize the linear stability of bilayer and filament morphologies associated to hypersurfaces within the strong functionalization scaling. In particular, we show that the onset of the pearling instability, which triggers fast in-plane oscillations associated to bifurcation to higher codimensional morphology, is controlled by the functionalization parameters and the spatially constant value of the far-field chemical potential. Crucially, we show that onset of pearling is independent of the shape of the defining hypersurface.
引用
收藏
页码:3395 / 3426
页数:32
相关论文
共 50 条
  • [31] On a Coupled Cahn-Hilliard System for Copolymer/Homopolymer Mixtures
    Cherfil, Laurence
    Miranville, Alain
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (01) : 22 - 37
  • [32] ON A GENERALIZED CAHN-HILLIARD MODEL WITH p-LAPLACIAN
    Folino, Raffaele
    Fernando Lopez-Rios, Luis
    Strani, Marta
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) : 647 - 682
  • [33] The Operator-Splitting Method for Cahn-Hilliard is Stable
    Li, Dong
    Quan, Chaoyu
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [34] NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL
    Boyer, Franck
    Minjeaud, Sebastian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04): : 697 - 738
  • [35] The coupled Cahn-Hilliard/Allen-Cahn system with dynamic boundary conditions
    Makki, Ahmad
    Miranville, Alain
    Petcu, Madalina
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 183 - 209
  • [36] The Convergence of Attractors for Some Discrete Cahn-Hilliard Systems
    Wang, Ruijing
    Li, Chunqiu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [37] DISTRIBUTED OPTIMAL CONTROL OF THE CAHN-HILLIARD SYSTEM INCLUDING THE CASE OF A DOUBLE-OBSTACLE HOMOGENEOUS FREE ENERGY DENSITY
    Hintermueller, M.
    Wegner, D.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (01) : 388 - 418
  • [38] Existence of solutions to a Cahn-Hilliard system with two mobilities
    Cherfils, Laurence
    Miranville, Alain
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [39] On a Cahn-Hilliard system with source term and thermal memory
    Colli, Pierluigi
    Gilardi, Gianni
    Signori, Andrea
    Sprekels, Joergen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 240
  • [40] A DOUBLY NONLINEAR CAHN-HILLIARD SYSTEM WITH NONLINEAR VISCOSITY
    Bonetti, Elena
    Colli, Pierluigi
    Scarpa, Luca
    Tomassetti, Giuseppe
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (03) : 1001 - 1022