PEARLING BIFURCATIONS IN THE STRONG FUNCTIONALIZED CAHN-HILLIARD FREE ENERGY

被引:10
|
作者
Kraitzman, Noa [1 ]
Promislow, Keith [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
functionalized Cahn-Hilliard; pearling stability; strong functionalization; generic hypersurfaces; INTERFACES; EQUATION;
D O I
10.1137/16M1108406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The functionalized Cahn-Hilliard free energy supports phase-separated morphologies of distinct codimension, including codimension-one bilayer and codimension-two filament morphologies. We characterize the linear stability of bilayer and filament morphologies associated to hypersurfaces within the strong functionalization scaling. In particular, we show that the onset of the pearling instability, which triggers fast in-plane oscillations associated to bifurcation to higher codimensional morphology, is controlled by the functionalization parameters and the spatially constant value of the far-field chemical potential. Crucially, we show that onset of pearling is independent of the shape of the defining hypersurface.
引用
收藏
页码:3395 / 3426
页数:32
相关论文
共 50 条
  • [21] ON A CLASS OF CAHN-HILLIARD MODELS WITH NONLINEAR DIFFUSION
    Schimperna, Giulio
    Pawlow, Irena
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 31 - 63
  • [22] ON THE VISCOUS CAHN-HILLIARD SYSTEM WITH TWO MOBILITIES
    Cherfils, Laurence
    Miranville, Alain
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (12): : 3606 - 3621
  • [23] Solutions with single radial interface of the generalized Cahn-Hilliard flow
    Liu, Chao
    Yang, Jun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [24] On the viscous Allen-Cahn and Cahn-Hilliard systems with willmore regularization
    Makki, Ahmad
    APPLICATIONS OF MATHEMATICS, 2016, 61 (06) : 685 - 725
  • [25] A method for the correlation of the Cahn-Hilliard gradient energy coefficient with bulk thermodynamic data
    Lass, Eric A.
    Zhou, Peng
    Johnson, William C.
    Shiflet, Gary J.
    SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIALS 2005, VOL 1, 2005, : 87 - 92
  • [26] Existence, bifurcation, and geometric evolution of quasi-bilayers in the multicomponent functionalized Cahn-Hilliard equation
    Promislow, Keith
    Wu, Qiliang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 75 (02) : 443 - 489
  • [27] Nonlocal Cahn-Hilliard type model for image inpainting
    Jiang, Dandan
    Azaiez, Mejdi
    Miranville, Alain
    Xu, Chuanju
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 76 - 91
  • [28] Formation and evolution of target patterns in Cahn-Hilliard flows
    Fan, Xiang
    Diamond, P. H.
    Chacon, L.
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [29] On a Cahn-Hilliard system with convection and dynamic boundary conditions
    Colli, Pierluigi
    Gilardi, Gianni
    Sprekels, Juergen
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (05) : 1445 - 1475
  • [30] On linear schemes for a Cahn-Hilliard diffuse interface model
    Guillen-Gonzalez, F.
    Tierra, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 140 - 171