Optimal Input Design for Parameter Identification in an Electrochemical Li-ion Battery Model

被引:0
作者
Park, Saehong [1 ]
Kato, Dylan [1 ]
Gima, Zach [1 ]
Klein, Reinhardt [2 ]
Moura, Scott [1 ]
机构
[1] Univ Calif Berkeley, Energy Controls & Applicat Lab eCAL, Berkeley, CA 94720 USA
[2] Robert Bosch LLC, Res & Technol Ctr, Palo Alto, CA 94304 USA
来源
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC) | 2018年
关键词
Electrochemical Model; Sensitivity Analysis; System Identification; Input Design; Levenberg-Marquardt; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of optimally designing an excitation input for parameter identification of an electrochemical Li-ion battery model. The optimized input is obtained by solving a relaxed, convex knapsack problem. In contrast to performing parameter identification with standard test cycles, we consider the problem as designing an optimal input trajectory that maximizes parameter identifiability. Specifically, we analytically derive sensitivity equations for the electrochemical model. This approach enables parameter sensitivity analysis and optimal parameter fitting via a gradient-based algorithm. The simulation results show that the optimized inputs achieve faster parameter identification compared to standard test cycles and tighten the parameter estimation confidence intervals.
引用
收藏
页码:2300 / 2305
页数:6
相关论文
共 50 条
[41]   UAS based Li-ion battery model parameters estimation [J].
Ali, D. ;
Mukhopadhyay, S. ;
Rehman, H. ;
Khurram, A. .
CONTROL ENGINEERING PRACTICE, 2017, 66 :126-145
[42]   Lumped model of Li-ion battery considering hysteresis effect [J].
Fang, Pengya ;
Zhang, Anhao ;
Wang, Di ;
Sui, Xiaoxiao ;
Yin, Liping .
JOURNAL OF ENERGY STORAGE, 2024, 86
[43]   A Third-order Reaction Li-ion Battery Model [J].
Hsieh, Yao-Ching ;
Chiu, Yu-Chun ;
Wu, Wei-Ting .
2016 INTERNATIONAL SYMPOSIUM ON FUNDAMENTALS OF ELECTRICAL ENGINEERING (ISFEE), 2016,
[44]   Robust Model Parameter Identification and SOC Estimation for Li-Ion Batteries Considering Noisy Measurement [J].
Guo, Peng ;
Ma, Wentao ;
Liu, Xinghua ;
Chen, Badong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025,
[45]   Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model [J].
Pang Hui .
ACTA PHYSICA SINICA, 2017, 66 (23)
[46]   Parameter Identification of Commercial Li-ion Batteries with Marine Predator Algorithm [J].
Abdelhafiz, Shahenda M. ;
AbdelAty, A. M. ;
Fouda, M. E. ;
Radwan, A. G. .
2021 IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2021, :208-211
[47]   Optimal variable estimation of a Li-ion battery model by fractional calculus and bio-inspired algorithms [J].
Abdullaeva, Barno ;
Opulencia, Maria Jade Catalan ;
Borisov, Vitaliy ;
Uktamov, Khusniddin Fakhriddinovich ;
Abdelbasset, Walid Kamal ;
Al-Nussair, Ahmed Kateb Jumaah ;
Abdulhasan, Maki Mahdi ;
Thangavelu, Lakshmi ;
Jabbar, Abdullah Hasan .
JOURNAL OF ENERGY STORAGE, 2022, 54
[48]   Electrochemical noise of Li-ion battery: measurement with load-interrupt technique [J].
Astafev, E. A. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (05) :1505-1512
[49]   Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis [J].
Kim, Jungsoo ;
Chun, Huiyong ;
Kim, Minho ;
Han, Soohee ;
Lee, Jang-Woo ;
Lee, Tae-Kyung .
JOURNAL OF ENERGY STORAGE, 2021, 42
[50]   Li-ion battery aging model robustness: An analysis using univariate and multivariate techniques [J].
Marchegiani, Enrico ;
Ferracuti, Francesco ;
Monteriu, Andrea ;
Jin, Lingkang ;
Rossi, Mose ;
Comodi, Gabriele ;
Ciabattoni, Lucio .
JOURNAL OF ENERGY STORAGE, 2023, 72