Optimal Input Design for Parameter Identification in an Electrochemical Li-ion Battery Model

被引:0
作者
Park, Saehong [1 ]
Kato, Dylan [1 ]
Gima, Zach [1 ]
Klein, Reinhardt [2 ]
Moura, Scott [1 ]
机构
[1] Univ Calif Berkeley, Energy Controls & Applicat Lab eCAL, Berkeley, CA 94720 USA
[2] Robert Bosch LLC, Res & Technol Ctr, Palo Alto, CA 94304 USA
来源
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC) | 2018年
关键词
Electrochemical Model; Sensitivity Analysis; System Identification; Input Design; Levenberg-Marquardt; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of optimally designing an excitation input for parameter identification of an electrochemical Li-ion battery model. The optimized input is obtained by solving a relaxed, convex knapsack problem. In contrast to performing parameter identification with standard test cycles, we consider the problem as designing an optimal input trajectory that maximizes parameter identifiability. Specifically, we analytically derive sensitivity equations for the electrochemical model. This approach enables parameter sensitivity analysis and optimal parameter fitting via a gradient-based algorithm. The simulation results show that the optimized inputs achieve faster parameter identification compared to standard test cycles and tighten the parameter estimation confidence intervals.
引用
收藏
页码:2300 / 2305
页数:6
相关论文
共 50 条
[31]   Parameter identification of lithium-ion battery electrochemical model using sensitivity analysis and neural networks [J].
Cheng, Xiang ;
Yin, Wenxuan ;
Huang, Xiang ;
Liu, Furong ;
Xie, Changjun .
2024 IEEE 9TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC, 2024,
[32]   Modeling and Identification of Li-ion Cells [J].
dos Santos, P. Lopes ;
Perdicoulis, T-P Azevedo ;
Salgado, Paulo A. .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :1015-1020
[33]   Assessment of Multi-Objective Optimization Algorithms for Parametric Identification of a Li-Ion Battery Model [J].
Echevarria, Yuviny ;
Sanchez, Luciano ;
Blanco, Cecilio .
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2016, 9648 :250-260
[34]   Electrochemical Model-Based Condition Monitoring via Experimentally Identified Li-Ion Battery Model and HPPC [J].
Rahman, Md Ashiqur ;
Anwar, Sohel ;
Izadian, Afshin .
ENERGIES, 2017, 10 (09)
[35]   Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence [J].
Chen, Long ;
Xu, Ruyu ;
Rao, Weining ;
Li, Huanhuan ;
Wang, Ya-Ping ;
Yang, Tao ;
Jiang, Hao-Bin .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05) :4124-4143
[36]   Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network [J].
Chun, Huiyong ;
Kim, Jungsoo ;
Han, Soohee .
IFAC PAPERSONLINE, 2019, 52 (04) :129-134
[37]   Optimal Experimental Design for Parameterization of an Electrochemical Lithium-Ion Battery Model [J].
Park, Saehong ;
Kato, Dylan ;
Gima, Zach ;
Klein, Reinhardt ;
Moura, Scott .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) :A1309-A1323
[38]   A Diffusive Electro-Equivalent Li-ion Battery Model [J].
Corno, Matteo ;
Savaresi, Sergio M. .
2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, :2976-2979
[39]   Error Analysis for Parameter Estimation of Li-ion Battery subject to System Uncertainties [J].
Fogelquist, Jackson ;
Lai, Qingzhi ;
Lin, Xinfan .
2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, :3099-3105
[40]   UAS based Li-ion battery model parameters estimation [J].
Ali, D. ;
Mukhopadhyay, S. ;
Rehman, H. ;
Khurram, A. .
CONTROL ENGINEERING PRACTICE, 2017, 66 :126-145