Optimal Input Design for Parameter Identification in an Electrochemical Li-ion Battery Model

被引:0
作者
Park, Saehong [1 ]
Kato, Dylan [1 ]
Gima, Zach [1 ]
Klein, Reinhardt [2 ]
Moura, Scott [1 ]
机构
[1] Univ Calif Berkeley, Energy Controls & Applicat Lab eCAL, Berkeley, CA 94720 USA
[2] Robert Bosch LLC, Res & Technol Ctr, Palo Alto, CA 94304 USA
来源
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC) | 2018年
关键词
Electrochemical Model; Sensitivity Analysis; System Identification; Input Design; Levenberg-Marquardt; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of optimally designing an excitation input for parameter identification of an electrochemical Li-ion battery model. The optimized input is obtained by solving a relaxed, convex knapsack problem. In contrast to performing parameter identification with standard test cycles, we consider the problem as designing an optimal input trajectory that maximizes parameter identifiability. Specifically, we analytically derive sensitivity equations for the electrochemical model. This approach enables parameter sensitivity analysis and optimal parameter fitting via a gradient-based algorithm. The simulation results show that the optimized inputs achieve faster parameter identification compared to standard test cycles and tighten the parameter estimation confidence intervals.
引用
收藏
页码:2300 / 2305
页数:6
相关论文
共 23 条
[1]  
Andersson J., 2013, A General-Purpose Software Framework for Dynamic Optimization
[2]  
[Anonymous], 2004, Technical Report
[3]  
[Anonymous], 2010, CVX: Matlab software for disciplined convex programming (web page and software)
[4]  
[Anonymous], 2012, ELEMENTS INFORM THEO
[5]   Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter [J].
Bizeray, A. M. ;
Zhao, S. ;
Duncan, S. R. ;
Howey, D. A. .
JOURNAL OF POWER SOURCES, 2015, 296 :400-412
[6]  
Chaturvedi NA, 2010, IEEE CONTR SYST MAG, V30, P49, DOI 10.1109/MCS.2010.936293
[7]  
Di Domenico D., 2010, J DYNAMIC SYSTEMS ME, V132
[8]   Genetic identification and fisher identifiability analysis of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 cell [J].
Forman, Joel C. ;
Moura, Scott J. ;
Stein, Jeffrey L. ;
Fathy, Hosam K. .
JOURNAL OF POWER SOURCES, 2012, 210 :263-275
[9]   Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Pade Approximation [J].
Forman, Joel C. ;
Bashash, Saeid ;
Stein, Jeffrey L. ;
Fathy, Hosam K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) :A93-A101
[10]   Model-based design of experiments for parameter precision: State of the art [J].
Franceschini, Gaia ;
Macchietto, Sandro .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (19) :4846-4872