Optimal Berry-Esseen bound for statistical estimations and its application to SPDE

被引:12
|
作者
Kim, Yoon Tae [1 ]
Park, Hyun Suk [1 ]
机构
[1] Hallym Univ, Dept Stat, Chunchon 200702, Gangwon, South Korea
基金
新加坡国家研究基金会;
关键词
Berry-Esseen bound; Central limit theorem; Kolmogorov distance; Malliavin calculus; Maximum likelihood estimator; Multiple stochastic integral; Stein's method; Stochastic partial differential equations;
D O I
10.1016/j.jmva.2017.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider asymptotically normal statistics of the form F-n/G(n), where F-n and G(n) are functionals of Gaussian fields. For these statistics, we establish an optimal Berry-Esseen bound for the Central Limit Theorem (CLT) of the sequence F-n/G(n), is phi (n) in the following sense: there exist constants 0 < c < C < infinity such that c <= d(Kol) (F-n/G(n), Z)/phi(n) <= C, where d(Kol) (F-n, Z) = sup(z is an element of R). vertical bar Pr(F-n, <= z) - Pr(Z <= z)vertical bar. As an example, we find an optimal Berry-Esseen bound for the CLT of the maximum likelihood estimators for parameters occurring in parabolic stochastic partial differential equations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:284 / 304
页数:21
相关论文
共 50 条