Average Distance and Vertex-Connectivity

被引:17
作者
Dankelmann, Peter [1 ]
Mukwembi, Simon [1 ]
Swart, Henda C. [1 ]
机构
[1] Univ Kwazulu Natal, Sch Math Sci, ZA-4041 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
distance; average distance; connectivity; radius; GRAPHS; RADIUS;
D O I
10.1002/jgt.20395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The average distance p(G) of a connected graph G of order n is the average of the distances between all pairs of vertices of G, i.e., mu(G) = ((n)(2))(-1) Sigma({x,y}subset of V(G)) d(G)(x, y), where V(G) denotes the vertex set of G and d(G)(x, y) is the distance between x and y. We prove that if G is a K-vertex-connected graph, kappa >= 3 an odd integer, of order n, then mu(G) <= n/2(kappa+1) + O(1). Our bound is shown to be best possible and our results, apart from answering a question of Plesnik [J Graph Theory 8 (1984), 1-24], Favaron et al. [Networks 19 (1989), 493-504], can be used to deduce a theorem that is essentially equivalent to a theorem by Egawa and Inoue [Ars Combin 51 (1999), 89-95] on the radius of a K-vertex-connected graph of given order, where kappa is odd. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 62: 157-177, 2009
引用
收藏
页码:157 / 177
页数:21
相关论文
共 13 条
[1]  
Dankelmann P, 2000, J GRAPH THEOR, V33, P1, DOI 10.1002/(SICI)1097-0118(200001)33:1<1::AID-JGT1>3.0.CO
[2]  
2-L
[3]   AVERAGE DISTANCE AND EDGE-CONNECTIVITY II [J].
Dankelmann, Peter ;
Mukwembi, Simon ;
Swart, Henda C. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 21 (04) :1035-1052
[4]   Average distance and edge-connectivity I [J].
Dankelmann, Peter ;
Mukwembi, Simon ;
Swart, Henda C. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) :92-101
[5]  
DELAVINA E, SPANNING TREES MANY
[6]  
DOYLE JK, 1977, DISCRETE MATH, V7, P147
[7]  
Egawa Y, 1999, ARS COMBINATORIA, V51, P89
[8]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[9]   EDGE-VULNERABILITY AND MEAN DISTANCE [J].
FAVARON, O ;
KOUIDER, M ;
MAHEO, M .
NETWORKS, 1989, 19 (05) :493-504
[10]   ON THE RADIUS OF GRAPHS [J].
HARANT, J ;
WALTHER, H .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (01) :113-117