A Set-Oriented Numerical Approach for Dynamical Systems with Parameter Uncertainty

被引:11
|
作者
Dellnitz, Michael [1 ]
Klus, Stefan [2 ]
Ziessler, Adrian [1 ]
机构
[1] Univ Paderborn, Dept Math, Paderborn, Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
来源
关键词
uncertainty quantification; set-oriented numerical methods; attractors; MULTILEVEL SUBDIVISION TECHNIQUES; ALMOST-INVARIANT SETS; POLYNOMIAL CHAOS; MANIFOLDS; APPROXIMATION;
D O I
10.1137/16M1072735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop a set-oriented numerical methodology which allows us to perform uncertainty quantification (UQ) for dynamical systems from a global point of view. That is, for systems with uncertain parameters we approximate the corresponding global attractors and invariant measures in the related stochastic setting. Our methods do not rely on generalized polynomial chaos techniques. Rather, we extend classical set-oriented methods designed for deterministic dynamical systems [M. Dellnitz and A. Hohmann, N u m er. Math., 75 (1997), pp. 293{317; M. Dellnitz and O. Junge, SIAM J. Numer. Anal., 36 (1999), pp. 491{515] to the UQ-context, and this allows us to analyze the long-term uncertainty propagation. The algorithms have been integrated into the software package GAIO [M. Dellnitz, G. Froyland, and O. Junge, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001, pp. 145{174], and we illustrate the use and efficiency of these techniques with a couple of numerical examples.
引用
收藏
页码:120 / 138
页数:19
相关论文
共 50 条
  • [21] An Efficient Numerical Simulation for Solving Dynamical Systems With Uncertainty
    Ahmadian, Ali
    Salahshour, Soheil
    Chan, Chee Seng
    Baleanu, Dumitur
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):
  • [22] The dynamical systems approach to numerical integration
    Wisdom, Jack
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (03) : 3273 - 3279
  • [23] Uncertainty representation in dynamical systems using rough set theory
    Campagner, Andrea
    Ciucci, Davide
    Dorigatti, Valentina
    THEORETICAL COMPUTER SCIENCE, 2022, 908 : 28 - 42
  • [24] DESIGN AND IMPLEMENTATION OF KARDAMOM - A SET-ORIENTED DATA FLOW DATABASE MACHINE
    VONBULTZINGSLOEWEN, G
    IOCHPE, C
    LIEDTKE, RP
    KRAMER, R
    SCHRYRO, M
    DITTRICH, KR
    LOCKEMANN, PC
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 368 : 18 - 33
  • [25] A set-oriented method definition language for object databases and its semantics
    Bertino, E
    Guerrini, G
    Merlo, I
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2003, 15 (14): : 1275 - 1335
  • [26] A Numerical Algorithm for Optimal Control of Systems with Parameter Uncertainty
    Walton, Claire
    Phelps, Chris
    Gong, Qi
    Kaminer, Isaac
    IFAC PAPERSONLINE, 2016, 49 (18): : 468 - 475
  • [27] Ensembles of classifiers based on rough sets theory and set-oriented database operations
    Hu, Xiaohua
    2006 IEEE International Conference on Granular Computing, 2006, : 67 - 73
  • [28] Dynamical level set method for parameter identification of nonlinear parabolic distributed parameter systems
    Li, Li
    Liu, Wanyu
    Han, Bo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 2752 - 2765
  • [29] A study of rigorous ODE integrators for multi-scale set-oriented computations
    Miyaji, Tomoyuki
    Pilarczyk, Pawel
    Gameiro, Marcio
    Kokubu, Hiroshi
    Mischaikow, Konstantin
    APPLIED NUMERICAL MATHEMATICS, 2016, 107 : 34 - 47
  • [30] PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES
    Chung, Matthias
    Binois, Mickael
    Gramacy, Robert B.
    Bardsley, Johnathan M.
    Moquin, David J.
    Smith, Amanda P.
    Smith, Amber M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2212 - A2238