On the application of accelerated molecular dynamics to liquid water simulations

被引:36
作者
de Oliveira, Cesar Augusto F. [1 ]
Hamelberg, Donald
McCammon, J. Andrew
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, Ctr Theoret Biol Phys, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Howard Hughes Med Inst, Ctr Theoret Biol Phys, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
D O I
10.1021/jp062845o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics ( MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.
引用
收藏
页码:22695 / 22701
页数:7
相关论文
共 28 条
[1]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]  
CASE DA, 1995, AMBER7
[5]   Solvent effects from a sequential Monte Carlo - Quantum mechanical approach [J].
Coutinho, K ;
Canuto, S .
ADVANCES IN QUANTUM CHEMISTRY, VOL. 28: RECENT ADVANCES IN COMPUTATIONAL CHEMISTRY, 1997, 28 :89-105
[6]   A targeted reweighting method for accelerating the exploration of high-dimensional configuration space [J].
Cukier, RI ;
Morillo, M .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[7]   Peptide folding simulations: no solvent required? [J].
Daura, X ;
Mark, AE ;
van Gunsteren, WF .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) :97-102
[8]   ATOMIC LEVEL SIMULATIONS ON A MILLION PARTICLES - THE CELL MULTIPOLE METHOD FOR COULOMB AND LONDON NONBOND INTERACTIONS [J].
DING, HQ ;
KARASAWA, N ;
GODDARD, WA .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06) :4309-4315
[9]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[10]   A reappraisal of what we have learnt during three decades of computer simulations on water [J].
Guillot, B .
JOURNAL OF MOLECULAR LIQUIDS, 2002, 101 (1-3) :219-260