Dynamic Hand Gesture Classification Based on Radar Micro-Doppler Signatures

被引:0
|
作者
Zhang, Shimeng [1 ]
Li, Gang [1 ]
Ritchie, Matthew [2 ]
Fioranelli, Francesco [3 ]
Griffiths, Hugh [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[3] Univ Glasgow, Sch Elect Engn, Glasgow, Lanark, Scotland
来源
2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR) | 2016年
基金
中国国家自然科学基金;
关键词
hand gesture classification; micro-Doppler signatures; support vector machine; human-computer interaction; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic hand gesture recognition is of great importance for human-computer interaction. In this paper, we present a method to discriminate the four kinds of dynamic hand gestures, snapping fingers, flipping fingers, hand rotation and calling, using a radar micro-Doppler sensor. Two micro-Doppler features are extracted from the time-frequency spectrum and the support vector machine is used to classify these four kinds of gestures. The experimental results on measured data demonstrate that the proposed method can produce a classification accuracy higher than 88.56%.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Feature Diversity for Optimized Human Micro-Doppler Classification Using Multistatic Radar
    Fioranelli, Francesco
    Ritchie, Matthew
    Gurbuz, Sevgi Zubeyde
    Griffiths, Hugh
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (02) : 640 - 654
  • [42] Deep Learning-Based Segmentation for the Extraction of Micro-Doppler Signatures
    Martinez, Javier
    Vossiek, Martin
    2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 2018, : 190 - 193
  • [43] Radar Micro-Doppler Signatures Model Simulation and Feature Extraction of Three Typical LSS Targets
    Wu, Qi
    Zhao, Jinhui
    Zhang, Yue
    Huang, Yang
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 1103 - 1108
  • [44] Classification of micro-Doppler signatures of human motions using log-Gabor filters
    Tivive, Fok Hing Chi
    Phung, Son Lam
    Bouzerdoum, Abdesselam
    IET RADAR SONAR AND NAVIGATION, 2015, 9 (09) : 1188 - 1195
  • [45] Open-Scenario-Oriented Human Gait Recognition Using Radar Micro-Doppler Signatures
    Yang, Yang
    Zhao, Dongxu
    Yang, Xiaoyi
    Li, Beichen
    Wang, Xingmeng
    Lang, Yue
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 6420 - 6432
  • [46] Human Activity Classification Based on Moving Orientation Determining Using Multistatic Micro-Doppler Radar Signals
    Qiao, Xingshuai
    Li, Gang
    Shan, Tao
    Tao, Ran
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Micro-Doppler signatures of helicopters in multistatic passive radars
    Baczyk, Marcin Kamil
    Samczynski, Piotr
    Kulpa, Krzysztof
    Misiurewicz, Jacek
    IET RADAR SONAR AND NAVIGATION, 2015, 9 (09) : 1276 - 1283
  • [48] Cross-frequency training with adversarial learning for radar micro-Doppler signature classification
    Gurbuz, Sevgi Z.
    Rahman, M. Mahbubur
    Kurtoglu, Emre
    Macks, Trevor
    Fioranelli, Francesco
    RADAR SENSOR TECHNOLOGY XXIV, 2020, 11408
  • [49] Unsupervised Domain Adaptation for Disguised-Gait-Based Person Identification on Micro-Doppler Signatures
    Yang, Yang
    Yang, Xiaoyi
    Sakamoto, Takuya
    Fioranelli, Francesco
    Li, Beichen
    Lang, Yue
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6448 - 6460
  • [50] Objective Evaluation of Clutter Suppression for Micro-Doppler Spectrograms of Hand Gesture/Sign Language Based on Pseudo-Reference Image
    Li, Beichen
    Yang, Yang
    Yang, Lei
    Fan, Cunhui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61