Optimizing the particle-size distribution and tap density of LiFePO4/C composites containing excess lithium

被引:4
作者
Hong, Jianhe [1 ]
Wei, Wenfei [1 ]
He, Gang [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
关键词
Li-ion batteries; Cathodes; Materials preparations; ELECTROCHEMICAL PERFORMANCE; SOLVOTHERMAL SYNTHESIS; CATHODE MATERIAL;
D O I
10.1007/s11581-018-2683-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiFePO4 is a promising cathode material for lithium-ion batteries, but its inferior tap density leads to low-volumetric energy density of Li-ion batteries. This work reports that lithium amount can tune the particle-size distribution and tap density of the Li1+xFePO4/C (x=0-0.16) composites prepared via a wet chemistry method followed by carbon thermal reduction reaction. Excess lithium effectively prevents the agglomeration of primary particles, tunes the particle-size distribution, and thus improves the tap density of Li1+xFePO4/C composite. The charge transfer resistance of the Li1+xFePO4/C composite decreases with the increase of lithium amount. The Li1+xFePO4/C composite with x=0.12 exhibits a high tap density of 1.55g cm(-3) and a discharge capacity of 156mAh g(-1) at 0.1C. Therefore, the tap density and electrochemical performance of LiFePO4/C composite could be conveniently tuned by lithium amount, indicating a facile and promising technique for LiFePO4/C composite preparation.
引用
收藏
页码:2035 / 2039
页数:5
相关论文
共 27 条
  • [1] Nonstoichiometric LiFePO4: Defects and Related Properties
    Axmann, P.
    Stinner, C.
    Wohlfahrt-Mehrens, M.
    Mauger, A.
    Gendron, F.
    Julien, C. M.
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (08) : 1636 - 1644
  • [2] Enhancement of electrochemical behavior of nanostructured LiFePO4/Carbon cathode material with excess Li
    Bazzi, K.
    Nazri, M.
    Naik, V. M.
    Garg, V. K.
    Oliveira, A. C.
    Vaishnava, P. P.
    Nazri, G. A.
    Naik, R.
    [J]. JOURNAL OF POWER SOURCES, 2016, 306 : 17 - 23
  • [3] Particle-size distribution and packing fraction of geometric random packings
    Brouwers, H. J. H.
    [J]. PHYSICAL REVIEW E, 2006, 74 (03):
  • [4] Aqueous synthesis of LiFePO4 with Fractal Granularity
    Caban-Huertas, Zahilia
    Ayyad, Omar
    Dubal, Deepak P.
    Gomez-Romero, Pedro
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] Preparation and characterization of nanoscale LiFePO4 cathode materials by a two-step solid-state reaction method
    Cheng, Wen-hua
    Wang, Lei
    Zhang, Qi-bing
    Wang, Zhao-jun
    Xu, Jin-bao
    Ren, Wei
    Bian, Liang
    Chang, Ai-min
    [J]. JOURNAL OF MATERIALS SCIENCE, 2017, 52 (04) : 2366 - 2372
  • [6] LiFePO4/C nanocomposites for lithium-ion batteries
    Eftekhari, Ali
    [J]. JOURNAL OF POWER SOURCES, 2017, 343 : 395 - 411
  • [7] LiFePO4 synthesis routes for enhanced electrochemical performance
    Franger, S
    Le Cras, F
    Bourbon, C
    Rouault, H
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) : A231 - A233
  • [8] In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries
    Gong, Hao
    Xue, Hairong
    Wang, Tao
    He, Jianping
    [J]. JOURNAL OF POWER SOURCES, 2016, 318 : 220 - 227
  • [9] A new approach to LiFePO4/C synthesis: The use of complex carbon source without ball milling
    Hong, Jianhe
    Wang, Yanfen
    He, Gang
    He, Mingzhong
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2012, 133 (01) : 573 - 577
  • [10] Trace Fe3+ mediated synthesis of LiFePO4 micro/nanostructures towards improved electrochemical performance for lithium-ion batteries
    Hu, Lei
    Zhang, Tianwen
    Liang, Jianwen
    Zhu, Yongchun
    Zhang, Kailong
    Qian, Yitai
    [J]. RSC ADVANCES, 2016, 6 (01): : 456 - 463