Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

被引:11
作者
Huang, B. [1 ]
Satake, S. [1 ,2 ]
Kanno, R. [1 ,2 ]
Sugama, H. [1 ,2 ]
Matsuoka, S. [3 ]
机构
[1] Sokendai, Toki, Gifu 5095292, Japan
[2] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[3] Japan Atom Energy Agcy, Kashiwa, Chiba 2770871, Japan
关键词
PARTICLE-SIMULATION; COEFFICIENTS; CONFINEMENT; ELECTRON;
D O I
10.1063/1.4975611
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 ( 2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E x B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E x B is sufficiently large compared to the magnetic drift velocities. For example, M-p <= 0: 4 where Mp is the poloidal Mach number. On the other hand, when E x B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at E-r similar or equal to 0. In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.
引用
收藏
页数:19
相关论文
共 38 条
[1]   THE HELICALLY SYMMETRICAL EXPERIMENT, (HSX) GOALS, DESIGN AND STATUS [J].
ANDERSON, FSB ;
ALMAGRI, AF ;
ANDERSON, DT ;
MATTHEWS, PG ;
TALMADGE, JN ;
SHOHET, JL .
FUSION TECHNOLOGY, 1995, 27 :273-277
[2]   Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) [J].
Beidler, C. D. ;
Allmaier, K. ;
Isaev, M. Yu ;
Kasilov, S. V. ;
Kernbichler, W. ;
Leitold, G. O. ;
Maassberg, H. ;
Mikkelsen, D. R. ;
Murakami, S. ;
Schmidt, M. ;
Spong, D. A. ;
Tribaldos, V. ;
Wakasa, A. .
NUCLEAR FUSION, 2011, 51 (07)
[3]   A GENERAL-SOLUTION OF THE RIPPLE-AVERAGED KINETIC-EQUATION (GSRAKE) [J].
BEIDLER, CD ;
DHAESELEER, WD .
PLASMA PHYSICS AND CONTROLLED FUSION, 1995, 37 (04) :463-490
[4]   An improved formulation of the ripple-averaged kinetic theory of neoclassical transport in stellarators [J].
Beidler, CD ;
Maassberg, H .
PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 (08) :1131-1148
[5]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205
[6]   Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations [J].
Briesemeister, A. ;
Zhai, K. ;
Anderson, D. T. ;
Anderson, F. S. B. ;
Talmadge, J. N. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (01)
[7]   On neoclassical impurity transport in stellarator geometry [J].
Garcia-Regana, J. M. ;
Kleiber, R. ;
Beidler, C. D. ;
Turkin, Y. ;
Maassberg, H. ;
Helander, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (07)
[8]   Physics in the magnetic configuration space of W7-X [J].
Geiger, J. ;
Beidler, C. D. ;
Feng, Y. ;
Maassberg, H. ;
Marushchenko, N. B. ;
Turkin, Y. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
[9]  
Gori S, 1997, THEORY OF FUSION PLASMAS - PROCEEDINGS OF THE JOINT VARENNA-LAUSSANE INTERNATIONAL WORKSHOP, P335
[10]   Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1 [J].
Goto, T. ;
Miyazawa, J. ;
Sakamoto, R. ;
Seki, R. ;
Suzuki, C. ;
Yokoyama, M. ;
Satake, S. ;
Sagara, A. .
NUCLEAR FUSION, 2015, 55 (06)