On the cardinality and complexity of the set of codings for self-similar sets with positive Lebesgue measure

被引:1
作者
Baker, Simon [1 ]
机构
[1] Univ Utrecht, NL-3508 TC Utrecht, Netherlands
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 179卷 / 01期
关键词
Iterated function systems; Beta-expansions; RANDOM BETA-EXPANSIONS; DELETED DIGITS; NONINTEGER BASES; HAUSDORFF DIMENSION; FRACTALS; NUMBERS;
D O I
10.1007/s00605-015-0755-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be real numbers in and be points in . Consider the collection of maps given by fj(x) =lambda jx + (1-lambda(j)) pj. It is a well known result that there exists a unique nonempty compact set satisfying Each has at least one coding, that is a sequence that satisfies We study the size and complexity of the set of codings of a generic when has positive Lebesgue measure. In particular, we show that under certain natural conditions almost every has a continuum of codings. We also show that almost every has a universal coding. Our work makes no assumptions on the existence of holes in and improves upon existing results when it is assumed contains no holes.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 26 条
  • [1] Discrete spectra and Pisot numbers
    Akiyama, Shigeki
    Komornik, Vilmos
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (02) : 375 - 390
  • [2] Golden gaskets: variations on the Sierpiniski sieve
    Broomhead, D
    Montaldi, J
    Sidorov, N
    [J]. NONLINEARITY, 2004, 17 (04) : 1455 - 1480
  • [3] Dajani K, 2007, DISCRETE CONT DYN S, V18, P199
  • [4] Dajani K, 2007, J EUR MATH SOC, V9, P157
  • [5] DAROCZY Z, 1993, PUBL MATH-DEBRECEN, V42, P397
  • [6] Developments in non-integer bases
    Erdos, P
    Komornik, V
    [J]. ACTA MATHEMATICA HUNGARICA, 1998, 79 (1-2) : 57 - 83
  • [7] CHARACTERIZATION OF THE UNIQUE EXPANSIONS 1=SIGMA-I=1 INFINITY Q-NI AND RELATED PROBLEMS
    ERDOS, P
    JOO, I
    KOMORNIK, V
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03): : 377 - 390
  • [8] Falconer K., 2014, MATH FDN APPL, P368
  • [10] Feng D.J, ARXIV11091407MATHNT