Moser-Trudinger inequality for the complex Monge-Ampere equation

被引:11
作者
Wang, Jiaxiang [1 ]
Wang, Xu-jia [2 ]
Zhou, Bin [3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 2601, Australia
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Complex Monge-Ampere equation; Moser-Trudinger inequality; Regularity; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; MANIFOLDS; ENERGY;
D O I
10.1016/j.jfa.2020.108765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a Moser-Trudinger type inequality for pluri-subharmonic functions vanishing on the boundary. Our proof uses a descent gradient flow for the complex Monge-Ampere functional. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 24 条
[11]  
Chen X., ARXIV171206697
[12]   Open problems in pluripotential theory [J].
Dinew, S. ;
Guedj, V. ;
Zeriahi, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (07) :902-930
[13]   Kahler-Einstein fillings [J].
Guedj, Vincent ;
Kolev, Boris ;
Yeganefar, Nader .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 :737-760
[14]   ENERGY FUNCTIONALS AND COMPLEX MONGE-AMPERE EQUATIONS [J].
Hou, Zuoliang ;
Li, Qi .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2010, 9 (03) :463-476
[15]   The complex Monge-Ampere equation [J].
Kolodziej, S .
ACTA MATHEMATICA, 1998, 180 (01) :69-117
[16]   SHARP FORM OF AN INEQUALITY BY N TRUDINGER [J].
MOSER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) :1077-&
[17]  
Phong D.H., ARXIV12092203
[18]   A nonlinear inequality of Moser-Trudinger type [J].
Tian, G ;
Zhu, XH .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (04) :349-354
[20]   Moser-Trudinger type inequalities for the Hessian equation [J].
Tian, Gu-Ji ;
Wang, Xu-Jia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) :1974-2002