Moser-Trudinger inequality for the complex Monge-Ampere equation

被引:11
作者
Wang, Jiaxiang [1 ]
Wang, Xu-jia [2 ]
Zhou, Bin [3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 2601, Australia
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Complex Monge-Ampere equation; Moser-Trudinger inequality; Regularity; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; MANIFOLDS; ENERGY;
D O I
10.1016/j.jfa.2020.108765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a Moser-Trudinger type inequality for pluri-subharmonic functions vanishing on the boundary. Our proof uses a descent gradient flow for the complex Monge-Ampere functional. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 24 条
[1]   Partial pluricomplex energy and integrability exponents of plurisubharmonic functions [J].
Ahag, P. ;
Cegrell, U. ;
Kolodziej, S. ;
Pham, H. H. ;
Zeriahi, A. .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :2036-2058
[2]   On the Moser-Trudinger inequality in complex space [J].
Ahag, Per ;
Czyz, Rafal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) :1456-1474
[3]  
[Anonymous], ARXIV11091263
[5]   A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics [J].
Berman, Robert J. .
ADVANCES IN MATHEMATICS, 2013, 248 :1254-1297
[6]  
Blocki Z., MINICOURSE PLURIPOTE
[7]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[8]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252
[9]  
CEGRELL U, 1992, MICH MATH J, V39, P145
[10]   Measures of finite pluricomplex energy [J].
Cegrell, Urban .
ANNALES POLONICI MATHEMATICI, 2019, 123 (01) :203-213