An optimal order error estimate of a linear finite element method for smooth solutions of 2D systems of conservation laws

被引:0
作者
Ji, Xiaomei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
finite element method; hyperbolic conservation laws; error estimates; DISCONTINUOUS GALERKIN METHOD; SPACE DIMENSIONS; VOLUME METHODS; CONVERGENCE; SCHEME; GRIDS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider approximating smooth solutions of systems of nonlinear conservation laws by a linear finite element method with uniform mesh in two spatial dimensions, where the time discretization is carried out by a second order explicit Runge-Kutta method. An optimal error estimate O(h(2)) in L-2-norm for continuous linear finite elements is obtained under the CFL condition Delta t <= Ch(4/3), Where h and Delta t axe the spatial meshsize and the time step, respectively, and the positive constant C is independent of h and Delta t.
引用
收藏
页码:364 / 382
页数:19
相关论文
共 16 条
[11]   A monotone finite element scheme for convection-diffusion equations [J].
Xu, JC ;
Zikatanov, L .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1429-1446
[12]   A second order explicit finite element scheme to multidimensional conservation laws and its convergence [J].
Ying, L .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09) :945-957
[13]  
Ying Longan, 2001, Mathematica Numerica Sinica, V23, P321
[14]   Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws [J].
Zhang, Q ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :641-666
[15]   Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws [J].
Zhang, Qiang ;
Shu, Chi-Wang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1703-1720
[16]   OPTIMAL AND SUPERCONVERGENCE ESTIMATES OF THE FINITE-ELEMENT METHOD FOR A SCALAR HYPERBOLIC EQUATION [J].
ZHOU, AH ;
LIN, Q .
ACTA MATHEMATICA SCIENTIA, 1994, 14 (01) :90-94