An optimal order error estimate of a linear finite element method for smooth solutions of 2D systems of conservation laws

被引:0
作者
Ji, Xiaomei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
finite element method; hyperbolic conservation laws; error estimates; DISCONTINUOUS GALERKIN METHOD; SPACE DIMENSIONS; VOLUME METHODS; CONVERGENCE; SCHEME; GRIDS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider approximating smooth solutions of systems of nonlinear conservation laws by a linear finite element method with uniform mesh in two spatial dimensions, where the time discretization is carried out by a second order explicit Runge-Kutta method. An optimal error estimate O(h(2)) in L-2-norm for continuous linear finite elements is obtained under the CFL condition Delta t <= Ch(4/3), Where h and Delta t axe the spatial meshsize and the time step, respectively, and the positive constant C is independent of h and Delta t.
引用
收藏
页码:364 / 382
页数:19
相关论文
共 16 条
[1]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[2]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[3]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[4]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[5]  
Cockburn B, 1991, RAIRO-MATH MODEL NUM, V25, P337
[6]  
Evans L. C., 2010, Partial Differential Equations, V19
[7]   CONVERGENCE OF HIGHER-ORDER UPWIND FINITE-VOLUME SCHEMES ON UNSTRUCTURED GRIDS FOR SCALAR CONSERVATION-LAWS IN SEVERAL SPACE DIMENSIONS [J].
KRONER, D ;
NOELLE, S ;
ROKYTA, M .
NUMERISCHE MATHEMATIK, 1995, 71 (04) :527-560
[8]   HIGH-RESOLUTION FINITE VOLUME METHODS ON ARBITRARY GRIDS VIA WAVE-PROPAGATION [J].
LEVEQUE, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 78 (01) :36-63
[9]  
SZEPESSY A, 1989, MATH COMPUT, V53, P527, DOI 10.1090/S0025-5718-1989-0979941-6
[10]  
SZEPESSY A, 1991, RAIRO-MATH MODEL NUM, V25, P749