High-voltage P2-type manganese oxide cathode induced by titanium gradient modification for sodium ion batteries

被引:42
作者
Zhao, Quanqing [1 ]
Butt, Faheem K. [2 ]
Guo, Zefeng [3 ]
Wang, Liqin [1 ]
Zhu, Youqi [1 ]
Xu, Xingyan [1 ]
Ma, Xilan [1 ]
Cao, Chuanbao [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Construct Tailorable Adv Funct Ma, Res Ctr Mat Sci, Beijing 100081, Peoples R China
[2] Univ Educ Lahore, Dept Phys, Div Sci & Technol, Lahore, Pakistan
[3] Datong Coal Mine Grp Shuozhou Coal Co Ltd, Huairen 038300, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium gradient modification; Sodium ion battery; High voltage; Manganese oxide; MG; PERFORMANCE; ELECTRODE; CO; TI; SUBSTITUTION; DISTORTION; STABILITY; COMPOSITE; MECHANISM;
D O I
10.1016/j.cej.2020.126308
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructing layered high-voltage P2-type manganese oxide with working voltage above 4.5 V incorporating into Ni2+/4+ redox and high capacity based on anionic redox has become trend to develop high energy density sodium ion batteries. However, capacity fading and undesired rate capability caused by serious phase transition, irreversible oxygen activity and electrolyte/electrode side reactions would occur especially under high operating voltage besides the Jahn-Teller effect. Here, based on anionic and cationic redox, a novel titanium gradient modification coupling with the synergic Ti-enriched surface and Ti-substituted interior is proposed to achieve excellent stability and rate capability. As a result, the high-voltage P2-Na0.66Mn0.54Ni0.13Co0.13O2 cathode induced by titanium gradient modification can deliver a large reversible discharge capacity of 133.2 mA h g(-1) with 77.9% capacity retention after 100 cycles under 4.7 V cut-off voltage at 1C (200 mA g(-1)), and achieve a high energy density of 456.4 Wh kg(-1). These outstanding results are attributed to the facts that Ti gradient modification not only is beneficial for suppressing the side reactions and enhancing the interfacial conductivity, but also can modify the lattice structure to improve the structural stability, leading to mitigate the phase transition and irreversible oxygen activity.
引用
收藏
页数:7
相关论文
共 56 条
[1]  
[Anonymous], 2019, ENG SCI
[2]   β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries [J].
Billaud, Juliette ;
Clement, Raphaele J. ;
Armstrong, A. Robert ;
Canales-Vazquez, Jesus ;
Rozier, Patrick ;
Grey, Clare P. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) :17243-17248
[3]   Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type NaxMg0.11Mn0.89O2 [J].
Buchholz, Daniel ;
Vaalma, Christoph ;
Chagas, Luciana Gomes ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2015, 282 :581-585
[4]   Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2 [J].
Cao, Xin ;
Li, Xiang ;
Qiao, Yu ;
Jia, Min ;
Qiu, Feilong ;
He, Yibo ;
He, Ping ;
Zhou, Haoshen .
ACS ENERGY LETTERS, 2019, 4 (10) :2409-+
[5]   A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries [J].
Chen, Tao ;
Liu, Weifang ;
Gao, Han ;
Zhuo, Yi ;
Hu, Hang ;
Chen, Ao ;
Zhang, Jianwen ;
Yan, Jun ;
Liu, Kaiyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (26) :12582-12588
[6]   Direct evidence for high Na+ mobility and high voltage structural processes in P2-Nax[LiyNizMn1-y-z]O2 (x, y, z ≤ 1) cathodes from solid- state NMR and DFT calculations [J].
Clement, R. J. ;
Xu, J. ;
Middlemiss, D. S. ;
Alvarado, J. ;
Ma, C. ;
Meng, Y. S. ;
Grey, C. P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (08) :4129-4143
[7]   Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies [J].
Clement, Raphaele J. ;
Billaud, Juliette ;
Armstrong, A. Robert ;
Singh, Gurpreet ;
Rojo, Teofilo ;
Bruce, Peter G. ;
Grey, Clare P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3240-3251
[8]   Recent advances in titanium-based electrode materials for stationary sodium-ion batteries [J].
Guo, Shaohua ;
Yi, Jin ;
Sun, Yang ;
Zhou, Haoshen .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :2978-3006
[9]   Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries [J].
Hakim, Charifa ;
Sabi, Noha ;
Ma, Le Anh ;
Dahbi, Mouad ;
Brandell, Daniel ;
Edstrom, Kristina ;
Duda, Laurent C. ;
Saadoune, Ismael ;
Younesi, Reza .
COMMUNICATIONS CHEMISTRY, 2020, 3 (01)
[10]   A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J].
Han, Man Huon ;
Gonzalo, Elena ;
Singh, Gurpreet ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :81-102