Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells

被引:89
作者
Holy, JM [1 ]
机构
[1] UMD Sch Med, Dept Anat & Cell Biol, Duluth, MN 55812 USA
关键词
curcumin; cell cycle; mitosis; micronuclei; monopolar spindle;
D O I
10.1016/S1383-5718(02)00076-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The dietary phytochemical curcumin possesses anti-inflammatory, -oxidant, and cytostatic properties, and exhibits significant potential as a chemopreventative agent in humans. Although many cell types are arrested in the G2/M-phase of the cell cycle after curcumin treatment, the mechanisms by which this occurs are not well understood. The purpose of this study was to examine the effects of curcumin on the cell cycle of MCF-7 breast cancer cells to determine whether growth arrest is associated with structural changes in cellular organization during mitosis. For this purpose, MCF-7 breast cancer cells were treated with 10-20 muM curcumin, and the effects on cell proliferation and mitosis studied. Structural changes were monitored by immunolabeling cells with antibodies to a number of cytoplasmic and nuclear proteins, including beta-tubulin, NuMA, lamins A/C and B1, lamin B receptor, and centromere antigens. At the concentrations used, a single dose of curcumin does not induce significant apoptosis, but is highly effective in inhibiting cell proliferation for over 6 days. During the first 24-48 h of treatment, many cells are arrested in M-phase, and DNA synthesis is almost completely inhibited. Remarkably, arrested mitotic cells exhibit monopolar spindles, and chromosomes do not undergo normal anaphase movements. After 48 h, most cells eventually leave M-phase, and many form multiple micronuclei instead of individual daughter nuclei. These observations indicate that the curcumin-induced G2/M arrest previously described for MCF-7 cells is due to the assembly of aberrant, monopolar mitotic spindles that are impaired in their ability to segregate chromosomes. The production of cells with extensive micronucleation after curcumin treatment suggests that at least some of the cytostatic, effects of this phytochemical are due to its ability to disrupt normal mitosis, and raises the possibility that curcumin may promote genetic instability under some circumstances. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 64 条
  • [1] L-929 cells harboring ectopically expressed Re1A resist curcumin-induced apoptosis
    Anto, RJ
    Maliekal, TT
    Karunagaran, D
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (21) : 15601 - 15604
  • [2] Araújo MCP, 1999, TERATOGEN CARCIN MUT, V19, P9, DOI 10.1002/(SICI)1520-6866(1999)19:1<9::AID-TCM2>3.0.CO
  • [3] 2-H
  • [4] Phosphorylation by p34(cdc2) regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo
    Blangy, A
    Lane, HA
    dHerin, P
    Harper, M
    Kress, M
    Nigg, EA
    [J]. CELL, 1995, 83 (07) : 1159 - 1169
  • [5] Chen H, 1999, ANTICANCER RES, V19, P3675
  • [6] Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin
    Chen, YR
    Tan, TH
    [J]. ONCOGENE, 1998, 17 (02) : 173 - 178
  • [7] Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats
    Chuang, SE
    Cheng, AL
    Lin, JK
    Kuo, ML
    [J]. FOOD AND CHEMICAL TOXICOLOGY, 2000, 38 (11) : 991 - 995
  • [8] Dorai T, 2000, MOL UROL, V4, P1
  • [9] MUTATION OF A GENE THAT ENCODES A KINESIN-LIKE PROTEIN BLOCKS NUCLEAR DIVISION IN ASPERGILLUS-NIDULANS
    ENOS, AP
    MORRIS, NR
    [J]. CELL, 1990, 60 (06) : 1019 - 1027
  • [10] Nonselective inhibition of proliferation of transformed and nontransformed cells by the anticancer agent curcumin (diferuloylmethane)
    Gautam, SC
    Yong, YX
    Pindolia, KR
    Janakiraman, N
    Chapman, RA
    [J]. BIOCHEMICAL PHARMACOLOGY, 1998, 55 (08) : 1333 - 1337