EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines

被引:0
|
作者
Claesen, Marc [1 ]
De Smet, Frank [2 ]
Suykens, Johan A. K. [1 ]
De Moor, Bart [1 ]
机构
[1] Katholieke Univ Leuven, ESAT STADIUS iMinds Future Hlth, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Publ Hlth & Primary Care, B-3001 Louvain, Belgium
关键词
Classification; ensemble learning; support vector machine; bagging;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
EnsembleSVM is a free software package containing efficient routines to perform ensemble learning with support vector machine (SVM) base models. It currently offers ensemble methods based on binary SVM models. Our implementation avoids duplicate storage and evaluation of support vectors which are shared between constituent models. Experimental results show that using ensemble approaches can drastically reduce training complexity while maintaining high predictive accuracy. The EnsembleSVM software package is freely available online at http://esat.kuleuven.be/stadius/ensemblesvm.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 50 条
  • [21] Ensemble of support vector machines for land cover classification
    Pal, M.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (10) : 3043 - 3049
  • [22] An ensemble of Weighted Support Vector Machines for Ordinal Regression
    Waegeman, Willem
    Boullart, Luc
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 12, 2006, 12 : 71 - 75
  • [23] An Ensemble of Deep Support Vector Machines for Image Categorization
    Abdullah, Azizi
    Veltkamp, Remco C.
    Wiering, Marco A.
    2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, 2009, : 301 - +
  • [24] An ensemble of support vector machines for predicting virulent proteins
    Nanni, Loris
    Lumini, Alessandra
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (04) : 7458 - 7462
  • [25] Ensemble approaches of support vector machines for multiclass classification
    Min, Jun-Ki
    Hong, Jin-Hyuk
    Cho, Sung-Bae
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 1 - 10
  • [26] Adaptive learning for reliability analysis using Support Vector Machines
    Pepper, Nick
    Crespo, Luis
    Montomoli, Francesco
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226
  • [27] Learning named entity classifiers using support vector machines
    Solorio, T
    López, AL
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2004, 2945 : 158 - 167
  • [28] Active learning of environmental data using Support Vector machines
    Kanevski, M
    Pozdnoukhov, A
    Maignan, M
    GIS and Spatial Analysis, Vol 1and 2, 2005, : 1198 - 1203
  • [29] Using Support Vector Machines as Learning Algorithm for Video Categorization
    Manuel Perea-Ortega, Jose
    Montejo-Raez, Arturo
    Teresa Martin-Valdivia, Maria
    Alfonso Urena-Lopez, L.
    MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 373 - 376
  • [30] Setting Parameters for Support Vector Machines using Transfer Learning
    Biondi, Gabriela Oliveira
    Prati, Ronaldo Cristiano
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 80 : S295 - S311