EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines

被引:0
作者
Claesen, Marc [1 ]
De Smet, Frank [2 ]
Suykens, Johan A. K. [1 ]
De Moor, Bart [1 ]
机构
[1] Katholieke Univ Leuven, ESAT STADIUS iMinds Future Hlth, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Publ Hlth & Primary Care, B-3001 Louvain, Belgium
关键词
Classification; ensemble learning; support vector machine; bagging;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
EnsembleSVM is a free software package containing efficient routines to perform ensemble learning with support vector machine (SVM) base models. It currently offers ensemble methods based on binary SVM models. Our implementation avoids duplicate storage and evaluation of support vectors which are shared between constituent models. Experimental results show that using ensemble approaches can drastically reduce training complexity while maintaining high predictive accuracy. The EnsembleSVM software package is freely available online at http://esat.kuleuven.be/stadius/ensemblesvm.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 14 条
  • [1] [Anonymous], IJCNN 01
  • [2] Bin Linghu, 2010, 2010 3rd International Symposium on Knowledge Acquisition and Modeling (KAM 2010), P80, DOI 10.1109/KAM.2010.5646323
  • [3] Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    Blackard, JA
    Dean, DJ
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 1999, 24 (03) : 131 - 151
  • [4] Bottou L, 2007, LARGE SCALE KERNEL M, V3, P301, DOI DOI 10.7551/MITPRESS/7496.003.0003
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [7] A parallel mixture of SVMs for very large scale problems
    Collobert, R
    Bengio, S
    Bengio, Y
    [J]. NEURAL COMPUTATION, 2002, 14 (05) : 1105 - 1114
  • [8] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [9] Fan RE, 2008, J MACH LEARN RES, V9, P1871
  • [10] List N., 2009, P 22 ANN C COMP LEAR