Waveguide-Enhanced Raman Spectroscopy (WERS): An Emerging Chip-Based Tool for Chemical and Biological Sensing

被引:11
作者
Wang, Pengyi [1 ]
Miller, Benjamin L. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Dermatol, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Biochem & Biophys, Rochester, NY 14642 USA
[4] Univ Rochester, Inst Opt, Rochester, NY 14642 USA
[5] Univ Rochester, Mat Sci Program, Rochester, NY 14642 USA
关键词
photonics; spectroscopy; Raman; sorbent polymers; THIN POLYMER-FILMS; EVANESCENT EXCITATION; SCATTERING; SURFACE; COLLECTION; INTEGRATION; ABSORPTION; EMISSION; SPECTRA; LAYERS;
D O I
10.3390/s22239058
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Photonic chip-based methods for spectroscopy are of considerable interest due to their applicability to compact, low-power devices for the detection of small molecules. Waveguide-enhanced Raman spectroscopy (WERS) has emerged over the past decade as a particularly interesting approach. WERS utilizes the evanescent field of a waveguide to generate Raman scattering from nearby analyte molecules, and then collects the scattered photons back into the waveguide. The large interacting area and strong electromagnetic field provided by the waveguide allow for significant enhancements in Raman signal over conventional approaches. The waveguide can also be coated with a molecular class-selective sorbent material to concentrate the analyte, thus further increasing the Raman signal. This review provides an overview of the historical development of WERS and highlights recent theoretical and experimental achievements with the technique.
引用
收藏
页数:16
相关论文
共 64 条
[31]   Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit [J].
Liu, Zuyang ;
Zhao, Haolan ;
Baumgartner, Bettina ;
Lendl, Bernhard ;
Stassen, Andim ;
Skirtach, Andre ;
Le Thomas, Nicolas ;
Baets, Roel .
OPTICS LETTERS, 2021, 46 (05) :1153-1156
[32]   Silicon Photonic Biosensors Using Label-Free Detection [J].
Luan, Enxiao ;
Shoman, Hossam ;
Ratner, Daniel M. ;
Cheung, Karen C. ;
Chrostowski, Lukas .
SENSORS, 2018, 18 (10)
[33]   THE MULTIPLE LIVES OF MOORE'S LAW [J].
Mack, Chris .
IEEE SPECTRUM, 2015, 52 (04) :31-37
[34]   Benzene Derivatives Analysis Using Aluminum Nitride Waveguide Raman Sensors [J].
Makela, Megan ;
Gordon, Paul ;
Tu, Dandan ;
Soliman, Cyril ;
Cote, Gerard L. ;
Maitland, Kristen ;
Lin, Pao Tai .
ANALYTICAL CHEMISTRY, 2020, 92 (13) :8917-8922
[35]   Perspective on the future of silicon photonics and electronics [J].
Margalit, Near ;
Xiang, Chao ;
Bowers, Steven M. ;
Bjorlin, Alexis ;
Blum, Robert ;
Bowers, John E. .
APPLIED PHYSICS LETTERS, 2021, 118 (22)
[36]  
Morton P.A., 2018, MOORES LAW PHOTONIC
[37]   Edge Couplers in Silicon Photonic Integrated Circuits: A Review [J].
Mu, Xin ;
Wu, Sailong ;
Cheng, Lirong ;
Fu, H. Y. .
APPLIED SCIENCES-BASEL, 2020, 10 (04)
[38]  
Novotny Lukas, 2012, Principles of nano-optics
[39]   LIGHT-SCATTERING IN OPTICAL-WAVEGUIDES [J].
OCONNOR, P ;
TAUC, J .
APPLIED OPTICS, 1978, 17 (20) :3226-3231
[40]   RAMAN-SPECTRUM OF OPTICAL FIBER WAVEGUIDE - EFFECT OF CLADDING [J].
OCONNOR, P ;
TAUC, J .
OPTICS COMMUNICATIONS, 1978, 24 (01) :135-138