ALGORITHMS FOR MARKOVIAN SOURCE SEPARATION BY ENTROPY RATE MINIMIZATION

被引:0
作者
Fu, Geng-Shen [1 ]
Phlypo, Ronald [1 ]
Anderson, Matthew [1 ]
Li, Xi-Lin [2 ]
Adali, Tuelay [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21250 USA
[2] Fortemedia, Sunnyvale, CA 94086 USA
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2013年
关键词
Blind source separation; Independent component analysis; Mutual information rate; Markov model; BLIND SEPARATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Since in many blind source separation applications, latent sources are both non-Gaussian and have sample dependence, it is desirable to exploit both non-Gaussianity and sample dependency. In this paper, we use the Markov model to construct a general framework for the analysis and derivation of algorithms that take both properties into account. We also present two algorithms using two effective source priors. The first one is a multivariate generalized Gaussian distribution and the second is an autoregressive model driven by a generalized Gaussian distributed process. We derive the Cramer-Rao lower bound and demonstrate that the performance of the algorithms approach the lower bound especially when the underlying model matches the parametric model. We also demonstrate that a flexible semi-parametric approach exhibits very desirable performance.
引用
收藏
页码:3248 / 3252
页数:5
相关论文
共 21 条
  • [1] Adali T, 2012, EUR SIGNAL PR CONF, P61
  • [2] Anderson M., 2013, P IEEE INT IN PRESS
  • [3] Anderson M, 2012, INT CONF ACOUST SPEE, P1885, DOI 10.1109/ICASSP.2012.6288271
  • [4] A maximum entropy characterization of symmetric Kotz type and burr Multivariate distributions
    Aulogiaris, G
    Zografos, K
    [J]. TEST, 2004, 13 (01) : 65 - 83
  • [5] AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION
    BELL, AJ
    SEJNOWSKI, TJ
    [J]. NEURAL COMPUTATION, 1995, 7 (06) : 1129 - 1159
  • [6] A blind source separation technique using second-order statistics
    Belouchrani, A
    AbedMeraim, K
    Cardoso, JF
    Moulines, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 434 - 444
  • [7] BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS
    CARDOSO, JF
    SOULOUMIAC, A
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) : 362 - 370
  • [8] High-order contrasts for independent component analysis
    Cardoso, JF
    [J]. NEURAL COMPUTATION, 1999, 11 (01) : 157 - 192
  • [9] Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
  • [10] An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model
    Hild, Kenneth E., II
    Attias, Hagal T.
    Nagarajan, Srikantan S.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (03): : 508 - 519