Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage

被引:151
作者
Li, Jingruo [1 ,2 ]
He, Lihong [1 ,2 ]
Liu, Tangzhi [1 ,2 ]
Cao, Xuejuan [1 ,2 ]
Zhu, Hongzhou [1 ,2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Civil Engn & Architecture, Chongqing 400074, Peoples R China
[2] Chongqing Jiaotong Univ, Natl Joint Engn Labs Traff Civil Mat, Chongqing 400074, Peoples R China
关键词
Polyethylene glycol; Silica sol; Shape-stabilized phase change material; Temperature-assisted sot-gel method; ACID/EXPANDED PERLITE COMPOSITE; FORM-STABLE PCMS; BEHAVIOR; RELIABILITY;
D O I
10.1016/j.solmat.2013.07.017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel sol-gel method was adopted to prepare polyethylene glycol/silicon dioxide shape-stabilized phase change materials (PEG/SiO2 ss-PCMs) with various PEG mass fractions. The gelatinization was carried out by adjusting temperature instead of adding coagulant. In PEG/SiO2 composites, PEG acted as the phase change material and silica gel served as the supporting material to keep the stable shape of the composites during the phase transition. Various characterization techniques were employed to investigate the structures and properties of the composites. Results showed that the composites exhibited the stable core-shell structures by impregnating PEG into multi-mesoporous silica gel; they could remain in the solid form even if the temperature exceeded the melting point of PEG. It was physical adsorption between PEG and silica gel, and the crystal structure of PEG component was unaffected, so that PEG in the composites retained an excellent phase change performance. The enthalpies of the composites varied from 63.4 J/g to 128.4 J/g (PEG mass fractions: 50-80%), which was proportional to PEG content. The thermal conductivities were increased to 0.558 W m(-1) K-1 by addition of graphite in mass fraction of 2.7%. Moreover, the composites presented excellent thermal stabilities and possessed a broad applicable temperature range, and they were suitable for thermal energy storage applications in building envelopes. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [41] Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar
    Ren, Miao
    Zhao, Hua
    Gao, Xiaojian
    ENERGY, 2022, 241
  • [42] Shape-Stabilized Cellulose Nanocrystal-Based Phase-Change Materials for Energy Storage
    Fan, Xuemeng
    Guan, Ying
    Li, Yingzhan
    Yu, Hou-Yong
    Marek, Jaromir
    Wang, Duanchao
    Militky, Jiri
    Zou, Zhuan-Yong
    Yao, Juming
    ACS APPLIED NANO MATERIALS, 2020, 3 (02) : 1741 - 1748
  • [43] The Experimental Research on the Thermal Properties of Shape-Stabilized Phase Change Materials
    Yan, Quanying
    Yue, Lihang
    Jin, Lili
    Huo, Ran
    Zhang, Lin
    ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4, 2013, 291-294 : 1159 - 1163
  • [44] Consistent preparation, chemical stability and thermal properties of a shape-stabilized porous carbon/paraffin phase change materials
    Liu, Zhiyong
    Zang, Chuyue
    Ju, Zhicheng
    Hu, Dan
    Zhang, Yunsheng
    Jiang, Jinyang
    Liu, Cheng
    JOURNAL OF CLEANER PRODUCTION, 2020, 247 (247)
  • [45] Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods
    He, Lihong
    Li, Jingruo
    Zhou, Chao
    Zhu, Hongzhou
    Cao, Xuejuan
    Tang, Boming
    SOLAR ENERGY, 2014, 103 : 448 - 455
  • [46] Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity
    Tang, Fang
    Su, Di
    Tang, Yaojie
    Fang, Guiyin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 141 : 218 - 224
  • [47] Novel PEG/SiO2/SiO2-modified expanded graphite composite phase change materials for enhanced thermal energy storage performance
    Nguyen, Giang Tien
    Tran, Nhung Thi
    Tam, Le Minh
    CHEMICAL PAPERS, 2024, 78 (09) : 5219 - 5231
  • [48] Synthesis of novel shape-stabilized phase change materials with high latent heat and low supercooling degree for thermal energy storage
    Li, Yu
    Zhao, Liang
    Hao, Wang
    Li, Baohua
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (19) : 3263 - 3270
  • [49] Copper microsphere hybrid mesoporous carbon as matrix for preparation of shape-stabilized phase change materials with improved thermal properties
    Liu, Yi
    Chen, Yan
    Zhang, Junwei
    Gao, Junkai
    Han, Zhi
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [50] Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials
    Li, Min
    Wu, Zhishen
    Kao, Hongtao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) : 2412 - 2416