Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage

被引:151
作者
Li, Jingruo [1 ,2 ]
He, Lihong [1 ,2 ]
Liu, Tangzhi [1 ,2 ]
Cao, Xuejuan [1 ,2 ]
Zhu, Hongzhou [1 ,2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Civil Engn & Architecture, Chongqing 400074, Peoples R China
[2] Chongqing Jiaotong Univ, Natl Joint Engn Labs Traff Civil Mat, Chongqing 400074, Peoples R China
关键词
Polyethylene glycol; Silica sol; Shape-stabilized phase change material; Temperature-assisted sot-gel method; ACID/EXPANDED PERLITE COMPOSITE; FORM-STABLE PCMS; BEHAVIOR; RELIABILITY;
D O I
10.1016/j.solmat.2013.07.017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel sol-gel method was adopted to prepare polyethylene glycol/silicon dioxide shape-stabilized phase change materials (PEG/SiO2 ss-PCMs) with various PEG mass fractions. The gelatinization was carried out by adjusting temperature instead of adding coagulant. In PEG/SiO2 composites, PEG acted as the phase change material and silica gel served as the supporting material to keep the stable shape of the composites during the phase transition. Various characterization techniques were employed to investigate the structures and properties of the composites. Results showed that the composites exhibited the stable core-shell structures by impregnating PEG into multi-mesoporous silica gel; they could remain in the solid form even if the temperature exceeded the melting point of PEG. It was physical adsorption between PEG and silica gel, and the crystal structure of PEG component was unaffected, so that PEG in the composites retained an excellent phase change performance. The enthalpies of the composites varied from 63.4 J/g to 128.4 J/g (PEG mass fractions: 50-80%), which was proportional to PEG content. The thermal conductivities were increased to 0.558 W m(-1) K-1 by addition of graphite in mass fraction of 2.7%. Moreover, the composites presented excellent thermal stabilities and possessed a broad applicable temperature range, and they were suitable for thermal energy storage applications in building envelopes. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [31] Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage
    Liang, Bin
    Lu, Xiang
    Li, Renpu
    Tu, Weiping
    Yang, Zhuohong
    Yuan, Teng
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 200
  • [32] Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites
    Guo, Qiang
    Wang, Tao
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3716 - 3721
  • [33] Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes
    Yu, Zepei
    Feng, Daili
    Feng, Yanhui
    Zhang, Xinxin
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 152
  • [34] Influence of gelation step for preparing PEG-SiO2 shape-stabilized phase change materials by sol-gel method
    Serrano, Angel
    Martin del Campo, Jesus
    Peco, Nieves
    Rodriguez, Juan F.
    Carmona, Manuel
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2019, 89 (03) : 731 - 742
  • [35] Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials
    Farideh Zeighampour
    Akbar Khoddami
    Patricia I. Dolez
    Fashion and Textiles, 10
  • [36] Preparation and characterization of PEG/surface-modified layered double hydroxides as a new shape-stabilized phase change material
    Zhu, Suhong
    Ji, Tao
    Yang, Bin
    Yang, Zhengxian
    RSC ADVANCES, 2019, 9 (41) : 23435 - 23443
  • [37] Thermally Conductive and Shape-Stabilized Polyethylene Glycol/Carbon Foam Phase-Change Composites for Thermal Energy Storage
    Lin, Fankai
    Zhang, Weiyi
    Shi, Tengteng
    Lv, Zhenfei
    Min, Xin
    Fang, Minghao
    Wu, Xiaowen
    Liu, Yan'gai
    Huang, Zhaohui
    CHEMISTRYSELECT, 2020, 5 (11): : 3217 - 3224
  • [38] Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties
    Sari, Ahmet
    Bicer, Alper
    Al-Sulaiman, F. A.
    Karaipekli, Ali
    Tyagi, V. V.
    ENERGY AND BUILDINGS, 2018, 164 : 166 - 175
  • [39] Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials
    Zeighampour, Farideh
    Khoddami, Akbar
    Dolez, Patricia
    FASHION AND TEXTILES, 2023, 10 (01)
  • [40] Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials
    Xin Meng
    Huanzhi Zhang
    Lixian Sun
    Fen Xu
    Qingzhu Jiao
    Ziming Zhao
    Jian Zhang
    Huaiying Zhou
    Yutaka Sawada
    Yingliang Liu
    Journal of Thermal Analysis and Calorimetry, 2013, 111 : 377 - 384