Global Asymptotic Stability in a Class of Reaction-Diffusion Equations with Time Delay

被引:0
作者
Yuan, Yueding [1 ,2 ,3 ]
Guo, Zhiming [1 ,3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Yichun Univ, Sch Math & Comp Sci, Yichun 336000, Peoples R China
[3] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
DIFFERENTIAL EQUATIONS; WAVE-FRONTS; MODEL;
D O I
10.1155/2014/378172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a very general class of delayed reaction-diffusion equations in which the reaction term can be nonmonotone and spatially nonlocal. By using a fluctuation method, combined with the careful analysis of the corresponding characteristic equations, we obtain some sufficient conditions for the global asymptotic stability of the trivial solution and the positive steady state to the equations subject to the Neumann boundary condition.
引用
收藏
页数:8
相关论文
共 21 条
[1]  
Evans LC, 2010, Partial Differential Equations
[2]  
Gourley SA, 2006, FIELDS I COMMUN, V48, P137
[3]   Wavefronts and global stability in a time-delayed population model with stage structure [J].
Gourley, SA ;
Kuang, Y .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2034) :1563-1579
[4]   On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities [J].
Huang, Chuangxia ;
Yang, Zhichun ;
Yi, Taishan ;
Zou, Xingfu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2101-2114
[5]  
Liang D., 2003, DIFFER EQUAT DYN SYS, V11, P117
[6]   ABSTRACT FUNCTIONAL-DIFFERENTIAL EQUATIONS AND REACTION DIFFUSION-SYSTEMS [J].
MARTIN, RH ;
SMITH, HL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (01) :1-44
[7]  
Smith H. L., 1995, MATH SURV MONOGRAPHS, V41
[8]  
Smith H, 2011, TEXTS APPL MATH, V57, P1, DOI 10.1007/978-1-4419-7646-8
[9]   New algorithm for calculating adomian polynomials for nonlinear operators [J].
Wazwaz, Abdul-Majid .
Applied Mathematics and Computation (New York), 2000, 111 (01) :53-69
[10]   A reaction-diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains [J].
So, JWH ;
Wu, JH ;
Zou, XF .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2012) :1841-1853