1-quasiconformal mappings on a (2,2)-type quadric

被引:1
作者
Wu Qing-yan [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Beltrami equation; quasiconformal mapping; quadric; CR automorphism; QUASI-CONFORMAL MAPPINGS; HEISENBERG-GROUP; CARNOT GROUPS; METRICS; SPACES;
D O I
10.1007/s11766-009-1946-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gets the Beltrami equations satisfied by a 1-quasiconformal mapping, which are exactly CR or anti-CR equations on (2,2)-type quadric Q (0). This means a 1-quasiconformal mapping on Q (0) is CR or anti-CR. This reduces the determination of 1-quasiconformal mappings to a problem on the theory of several complex analysis. The result about the group of CR automorphisms is used to determine the unit component of group of 1-quasiconformal mappings.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 18 条
  • [1] Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups
    Balogh, ZM
    Holopainen, I
    Tyson, JT
    [J]. MATHEMATISCHE ANNALEN, 2002, 324 (01) : 159 - 186
  • [2] Capogna L, 1997, COMMUN PUR APPL MATH, V50, P867, DOI 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO
  • [3] 2-3
  • [4] Conformality and Q-harmonicity in Carnot groups
    Capogna, Luca
    Cowling, Michael
    [J]. DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) : 455 - 479
  • [5] Chow W-L., 1939, Math. Ann, V117, P98, DOI [DOI 10.1007/BF01450011, 10.1007/BF01450011]
  • [6] HOLOMORPHIC AUTOMORPHISMS OF QUADRICS
    EZOV, VV
    SCHMALZ, G
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1994, 216 (03) : 453 - 470
  • [7] Gromov M., 1996, Progr. Math., V144, P79
  • [8] FOUNDATIONS FOR THE THEORY OF QUASI-CONFORMAL MAPPINGS ON THE HEISENBERG-GROUP
    KORANYI, A
    REIMANN, HM
    [J]. ADVANCES IN MATHEMATICS, 1995, 111 (01) : 1 - 87
  • [9] QUASICONFORMAL MAPPINGS ON THE HEISENBERG-GROUP
    KORANYI, A
    REIMANN, HM
    [J]. INVENTIONES MATHEMATICAE, 1985, 80 (02) : 309 - 338
  • [10] MOSTOW G. D., 1973, Annals of Mathematics Studies, V78