Moderate deviations and central limit theorem for small perturbation Wishart processes

被引:10
作者
Chen, Lei [1 ]
Gao, Fuqing [1 ]
Wang, Shaochen [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Large deviation; moderate deviation; central limit theorem; Wishart process; eigenvalue;
D O I
10.1007/s11464-013-0291-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X (epsilon) be a small perturbation Wishart process with values in the set of positive definite matrices of size m, i.e., the process X (epsilon) is the solution of stochastic differential equation with non-Lipschitz diffusion coefficient: , X (0) = x, where B is an mxm matrix valued Brownian motion and B' denotes the transpose of the matrix B. In this paper, we prove that satisfies a large deviation principle, and converges to a Gaussian process, where h(E >) -> +a and as epsilon -> 0. A moderate deviation principle and a functional central limit theorem for the eigenvalue process of X (epsilon) are also obtained by the delta method.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 14 条
[1]  
[Anonymous], PROBAB MATH STAT
[2]  
Bru M., 1991, J. Theor. Probab, V4, P725, DOI [/10.1007/BF01259552, DOI 10.1007/BF01259552]
[3]   DIFFUSIONS OF PERTURBED PRINCIPAL COMPONENT ANALYSIS [J].
BRU, MF .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (01) :127-136
[4]  
Dembo A., 2009, LARGE DEVIATIONS TEC, V38
[5]   Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes [J].
Donati-Martin, C ;
Rouault, A ;
Yor, M ;
Zani, M .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (02) :261-289
[6]  
Donati-Martin C, 2003, SOME PROPERTIES WISH
[7]   DELTA METHOD IN LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR ESTIMATORS [J].
Gao, Fuqing ;
Zhao, Xingqiu .
ANNALS OF STATISTICS, 2011, 39 (02) :1211-1240
[8]  
Guillin A, 2003, ANN PROBAB, V31, P413
[9]  
Guionnet Alice., 2009, LARGE RANDOM MATRICE
[10]  
Ma Y T, 2011, ARXIV11073432