Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production

被引:127
作者
Parisutham, Vinuselvi [1 ]
Kim, Tae Hyun [2 ]
Lee, Sung Kuk [1 ,3 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Life Sci, Ulsan 689798, South Korea
[2] Kongju Natl Univ, Dept Environm Engn, Kong Ju, South Korea
[3] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
Biofuels; Consolidated bioprocessing; Heterogeneous lignocellulosic biomass; Pretreatment; Synthetic biology; IMPROVED ETHANOL TOLERANCE; DILUTE-ACID PRETREATMENT; AQUEOUS-AMMONIA; CORN STOVER; ESCHERICHIA-COLI; LIGNOCELLULOSIC BIOMASS; CELLULOSE; FERMENTATION; SOAKING; YEAST;
D O I
10.1016/j.biortech.2014.03.114
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Lignocelluloses are rich sugar treasures, which can be converted to useful commodities such as biofuel with the help of efficient combination of enzymes and microbes. Although several bioprocessing approaches have been proposed, biofuel production from lignocelluloses is limited because of economically infeasible technologies for pretreatment, saccharification and fermentation. Use of consolidated bioprocessing (CBP) microbes is the most promising method for the cost-effective production of biofuels. However, lignocelluloses are obtained from highly diverse environment and hence are heterogeneous in nature. Therefore, it is necessary to develop and integrate tailor-designed pretreatment processes and efficient microbes that can thrive on many different kinds of biomass. In this review, the progress towards the construction of consolidated bioprocessing microbes, which can efficiently convert heterogeneous lignocellulosic biomass to bioenergy, has been discussed; in addition, the potential and constraints of current bioprocessing technologies for cellulosic biofuel production have been discussed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 72 条
[1]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[2]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[3]   Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli [J].
Bokinsky, Gregory ;
Peralta-Yahya, Pamela P. ;
George, Anthe ;
Holmes, Bradley M. ;
Steen, Eric J. ;
Dietrich, Jeffrey ;
Lee, Taek Soon ;
Tullman-Ercek, Danielle ;
Voigt, Christopher A. ;
Simmons, Blake A. ;
Keasling, Jay D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) :19949-19954
[4]   Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum [J].
Brown, Steven D. ;
Guss, Adam M. ;
Karpinets, Tatiana V. ;
Parks, Jerry M. ;
Smolin, Nikolai ;
Yang, Shihui ;
Land, Miriam L. ;
Klingeman, Dawn M. ;
Bhandiwad, Ashwini ;
Rodriguez, Miguel, Jr. ;
Raman, Babu ;
Shao, Xiongjun ;
Mielenz, Jonathan R. ;
Smith, Jeremy C. ;
Keller, Martin ;
Lynd, Lee R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (33) :13752-13757
[5]   Processing of wheat bran to sugar solution [J].
Choteborská, P ;
Palmarola-Adrados, B ;
Galbe, M ;
Zacchi, G ;
Melzoch, K ;
Rychtera, M .
JOURNAL OF FOOD ENGINEERING, 2004, 61 (04) :561-565
[6]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[7]   Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus [J].
DeBoy, Robert T. ;
Mongodin, Emmanuel F. ;
Fouts, Derrick E. ;
Tailford, Louise E. ;
Khouri, Hoda ;
Emerson, Joanne B. ;
Mohamoud, Yasmin ;
Watkins, Kisha ;
Henrissat, Bernard ;
Gilbert, Harry J. ;
Nelson, Karen E. .
JOURNAL OF BACTERIOLOGY, 2008, 190 (15) :5455-5463
[8]   Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae [J].
Den Haan, Riaan ;
Rose, Shaunita H. ;
Lynd, Lee R. ;
van Zyl, Willem H. .
METABOLIC ENGINEERING, 2007, 9 (01) :87-94
[9]   Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol [J].
Deng, Yu ;
Fong, Stephen S. .
METABOLIC ENGINEERING, 2011, 13 (05) :570-577
[10]   Engineering microbial biofuel tolerance and export using efflux pumps [J].
Dunlop, Mary J. ;
Dossani, Zain Y. ;
Szmidt, Heather L. ;
Chu, Hou Cheng ;
Lee, Taek Soon ;
Keasling, Jay D. ;
Hadi, Masood Z. ;
Mukhopadhyay, Aindrila .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7