Ostrowski-type inequalities pertaining to Atangana-Baleanu fractional operators and applications containing special functions

被引:3
作者
Sahoo, Soubhagya Kumar [1 ]
Kodamasingh, Bibhakar [1 ]
Kashuri, Artion [2 ]
Aydi, Hassen [3 ,4 ,5 ]
Ameer, Eskandar [6 ]
机构
[1] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Math, Bhubaneswar 751030, Odisha, India
[2] Univ Ismail Qemali, Fac Tech & Nat Sci, Dept Math, Vlora 9400, Albania
[3] Univ Sousse, Inst Super Informat & Tech Commun, H Sousse 4000, Tunisia
[4] China Med Univ, China Med Univ Hosp, Taichung 40402, Taiwan
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Ga Rankuwa, South Africa
[6] Taiz Univ, Dept Math, Taizi, Yemen
关键词
Ostrowski inequality; Convex functions; Atangana-Baleanu fractional operator; q-digamma functions; Modified Bessel functions; INTEGRAL-INEQUALITIES; DERIVATIVES; CONVEX;
D O I
10.1186/s13660-022-02899-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this article is to incorporate the concept of the Ostrowski inequality with the Atangana-Baleanu fractional integral operator. A novel integral identity for twice-differentiable functions is established after a rigorous investigation of several basic definitions and existing ideas related to inequalities and fractional calculus. Following that, numerous Ostrowski-type inequalities are provided based on this identity, which uses Mittag-Leffler as its kernel structure. Some specific applications, such as q-digamma functions and modified Bessel functions, are also investigated. Choosing s=1, we also analyze new results for convex functions as special cases. Our findings corroborate some well-documented inequalities.
引用
收藏
页数:27
相关论文
共 51 条
[1]   ON FRACTIONAL DERIVATIVES WITH EXPONENTIAL KERNEL AND THEIR DISCRETE VERSIONS [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
REPORTS ON MATHEMATICAL PHYSICS, 2017, 80 (01) :11-27
[2]   Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03) :1098-1107
[3]  
Agarwal R. P, 2016, Fasc. Math, V56, P5, DOI [10.1515/ fascmath-2016-0001, DOI 10.1515/FASCMATH-2016-0001]
[4]   Refinements of Ostrowski Type Integral Inequalities Involving Atangana-Baleanu Fractional Integral Operator [J].
Ahmad, Hijaz ;
Tariq, Muhammad ;
Sahoo, Soubhagya Kumar ;
Askar, Sameh ;
Abouelregal, Ahmed E. ;
Khedher, Khaled Mohamed .
SYMMETRY-BASEL, 2021, 13 (11)
[5]   Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions [J].
Akdemir, Ahmet Ocak ;
Karaoglan, Ali ;
Ragusa, Maria Alessandra ;
Set, Erhan .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[6]   ON AN EXTENSION OF THE OPERATOR WITH MITTAG-LEFFLER KERNEL [J].
Al-Refai, Mohammed ;
Baleanu, Dumitru .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
[7]   On weighted Atangana-Baleanu fractional operators [J].
Al-Refai, Mohammed .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[8]   Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities [J].
Ali, Rana Safdar ;
Mukheimer, Aiman ;
Abdeljawad, Thabet ;
Mubeen, Shahid ;
Ali, Sabila ;
Rahman, Gauhar ;
Nisar, Kottakkaran Sooppy .
FRACTAL AND FRACTIONAL, 2021, 5 (02)
[9]   Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense [J].
Alomari, M. ;
Darus, M. ;
Dragomir, S. S. ;
Cerone, P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1071-1076
[10]  
Alomari M., 2010, RGMIA Res. Rep. Coll., V13